Glycerol-modified poly-ε-caprolactone nanoparticles for drug delivery application

  • Melannie S. Carna Department of Chemistry, College of Arts and Sciences, Xavier University–Ateneo de Cagayan, Cagayan de Oro City 9000
  • Soma Chakraborty Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108
Keywords: modified poly-ε-caprolactone, propafenone, nanoparticles, glycerol, drug delivery

Abstract

Please download the paper to view the abstract.

References

Al Khouri N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm. 1986; 28:125-32.

Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Deliver Rev. 1997; 28:5-24.

Francis M, Cristea M, Winnik FM. Polymeric micelles for oral drug delivery: Why and how. Pure Appl Chem. 2004; 76:1321-1335.

Gref R, Luck M, Quellec P, Marchand M, Dellacherie E. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B. 2000; 18:301-313.

Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design,characterization and biological significance. Adv Drug Deliver Rev 2001; 47:113-131.

Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 2005; 6:3-5.

Kissel T, Li Y, Unge F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliver Rev. 2002; 54:99-124.

Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic Polymerization. Chem Rev. 2001, 101(12):3793-3818.

Leroux JC, Allemann E, Da Jaeghere F, Doelker E, Gurny R. Biodegradable nanoparticles - from sustained release formulations to improved site specific drug delivery. J Control Release. 1996; 39:339-350.

Li VHK, Wood RW. Ocular drug delivery of progesterone using nanoparticles. J Microencapsul. 1986; 3:213-218.

Melgar ZK, Chakraborty S. Biocatalytic synthesis and characterization of glycerol-modified branched poly-ε-caprolactone [thesis]. [Philippines]: Ateneo de Manila University; 2009. 35 p.

Peppas LB. Recent advances on the use of biodegradable microparticles and nanoparticles in the controlled drug delivery. Int J Pharm. 1995; 116:1-9.

Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-caprolactone microspheres and nanospheres:an overview. Int J Pharm. 2004; 278:1-23.

Soppimath K, Aminabhavi T, Kulkami A, Rudzinski W. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001; 70:1-20.

Sÿachl R, Uchman M, Mateˇjı´cˇek P, Procha´zka K, Sÿteˇpa´nek M. Preparation and characterization of self-assembled nanoparticles formed by poly(ethylene oxide)-block-poly(epsilon-caprolactone) copolymers with long poly(epsilon-caprolactone) blocks in aqueous solutions. Langmuir. 2007; 23:3395-3400.

Wolinsky JB, William R, Colson YL, Grinstaff MW. Poly(carbonate ester)s based on units of 6-hydroxyhexanoic acid and glycerol. Macromolecules. 2007; 40:7065-7068.

Published
2014-10-08
How to Cite
Carna, M. S., & Chakraborty, S. (2014). Glycerol-modified poly-ε-caprolactone nanoparticles for drug delivery application. KIMIKA, 25(1), 38-46. https://doi.org/10.26534/kimika.v25i1.38-46
Section
Research Articles