Extraction And Characterization of Bioactive Peptides Derived from the Hydrolysates of Total Soluble Proteins of Pistachio Nuts (Pistacia vera L.)

Authors

  • Nico G. Dumandan Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031
  • Mark Rickard N. Angelica Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031
  • Ma. Desiree Belina-Aldemita Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031
  • Mary Ann O. Torio Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031

DOI:

https://doi.org/10.26534/kimika.v25i1.1-10

Keywords:

Pistachio, antioxidative, antibacterial, angiotensin-converting, bioactive peptides

Abstract

This study explored the potential of pistachio nut (Pistacia vera L.) total soluble proteins to release bioactive peptides exhibiting angiotensin-converting enzyme (ACE) inhibition, antioxidative, and antibacterial activities. The total soluble proteins were extracted from the ground, defatted nut using 0.010 M phosphate buffered saline, pH 6.8. The extracted proteins were hydrolyzed at different time intervals using trypsin and chymotrypsin. Hydrolysates of the total soluble proteins at 24 h digestion time exhibited the highest ACE-inhibition activity of 76.67 ± 0.10% and 70.83 ± 0.00% for chymotrypsin and trypsin digestion, respectively. The 24 h enzymatic hydrolysates were further fractionated in RP-HPLC using a C18 Vydac column. The C1 fraction from the 24 h chymotryptic hydrolysates and T2 from the 24 h tryptic hydrolysates exhibited the highest ACE-inhibition activities with an IC50 value of 147.7 ± 0.8 and 148.7 ± 0.6 μg/mL, respectively. The 24 h chymotryptic and tryptic hydrolysates also exhibited a DPPH radical scavenging activity of 83.7 ± 1.1% (EC50 = 356.5 ± 1.0 μg/mL) and 80.4 ± 0.2% (EC50 = 402.7 ± 1.1 μg/mL), respectively. The hydroxyl radical scavenging activities of the 24 h chymotryptic and tryptic hydrolysates were found to be 22.8 ± 1.0 and 16.6 ± 3.7%, respectively. However, the 24 h tryptic and chymotryptic hydrolysates did not exhibit any antibacterial activity against the gram-negative Escherichia coli and gram-positive Staphylococcus aureus. Therefore, the total soluble proteins of pistachio nuts were found to contain peptides exhibiting ACE-inhibition and antioxidative activities upon hydrolysis with trypsin and chymotrypsin.

References

Abramoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics International. 2004; 11(7):36-42.

Abu-Salem FM, Mahmoud MH, Gibriel AY, Abou-Arab A. Characterization of antioxidant peptides of soybean protein hydrolysate. World Acad. Sci. Eng. Technol. 2013; 79:249-253.

Amsa T, Balla A, Tounkara F, Man L, Zhou HM. Effect of hydrolysis time on nutritional, functional and antioxidant properties of protein hydrolysates prepared from gingerbread plum (Neocarya macrophylla) seeds. Int. Food Res. J. 2013; 20(5):2081-2090.

Bamdad F, Wu J, Chen L. Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. J. Cereal Sci. 2011 Jul; 54(1):20-28.

Bowler R, Crapo J. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol. 2002; 110(3):349-356.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 May 7; 72:248-254.

Brogden N, Brogden K. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Ag. 2011; 38:217-225.

Chanput W, Theerakulkait C, Nakai S. Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. J. Cereal Sci. 2009 May; 49(3):422-428.

Chen N, Yang H, Sun Y, Niu J, Liu S. Purification and identification of antioxidant peptides from walnut (Juglans regea L.) protein hydrolysates. Peptides. 2012 Dec; 38(2):344-349.

Cheung H-S, Wang F-L, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. J. Biol. Chem. 1980; 255(2):401-407.

Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971 Jul; 20(7):1637-1648.

Dhalla N, Temsah R, Netticadan T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000 Jun; 18(6):655-673.

Elias RJ, Kellerby SS, Decker E. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008; 48:430–441.

Epand RM, Vogel HJ. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999; 1462:11-28.

Fastrez J, Fersht AR. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry.1973 May; 12(11):2025-2034.

Florisa R, Recio I, Berkhout B, Visser S. Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr. Pharm. Des. 2003 Jan; 9(16):1257-1275.

Folk JE, Piez KA, Carroll WR, Gladner JA. Carboxypeptidase B: IV. purification and characterization of the porcine enzyme. J. Biol. Chem. 1960; 235(8):2272-2277.

Halvorsen B, Carlsen M, Phillips K, Bohn S, Holte Jr. K, Jacobs D. Content of redox-active compounds (i.e. antioxidants) in food consumed in the United States. Am. J. Clin. Nutr. 2006; 84:95-135.

Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 2011 Jun 9; 165(1):23-35.

Hyun C-K, Shin H-K. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 2000 Sep; 36(1-2):65-71.

Ji N, Sun C, Zhao Y, Xiong L, Sun Q. Purification and identification of antioxidant peptides from peanut protien hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 2014 Oct; 161:148-154.

Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int. Dairy J. 2006; 16:945-960.

Li G-H, Liu H, Shi Y-H, Le G-W. Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J. Pharm. Biomed. Anal. 2005 Feb 23; 37(2):219-224.

Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003; 421:1427-1429.

National Statistics Office, Civil Registry Department, Vital Statistics Division. Deaths: Philippines 2009. Report No. 2012-719 [Internet]. 2013 October; Available from: http://www.census.gov.ph/ old/data/sectordata/ sr12719tx.html

Noorbakhsh R, Mortazavi SA, Sankian M, Shahidi F, Tehrani M, Azad FJ, et al. Pistachio allergy-prevalence and in vitro cross-reactivity with other nuts. Allergol. Int. 2011; 60:425-432.

Orhan I, Kupeli E, Aslan M, Kartal M, Yesilada E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J. Ethnopharmacol. 2006 Apr; 105(1-2):235-240.

Ozcelik B, Aslan M, Orhan I, Karaoglu T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. 2005; 160:159-164.

Park H, Kim S, Lee Y. Impact of oxidative stress on lung diseases. Respirology. 2009; 14(1):27-38.

Pellegrini A. Antimicrobial peptides from food proteins. Curr. Pharm. Des. 2003 Jan; 9(16):1225-1238.

Rajaei A, Barzegar M, Mobarez A, Sahari M, Esfahani Z. Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistacia vera) green hull extract. Food Chem. Toxicol. 2010 Jan; 48(1):107-112.

Ros E. Health benefits of nut consumption. Nutrients. 2010; 2:652-682.

Saha MR, Hasan SMR, Akter R, Hossain MM, Alam MS, Alam MA, et al. In vitro free radical scavenging activity of methanol extract of the leaves of Mimusops elengi Linn. Bangl. J. Vet. Med. 2008; 6(2):197-202.

Shokraii EH, Esen A. Composition, solubility and electrophoretic patterns of proteins isolated from Kerman pistachio nuts (Pistacia vera L.). J. Agric. Food Chem. 1988 May; 36(3):425-429.

Tanzadehpanah H, Asoodeh A, Chamani J. An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res. Inter. 2012; 49(1):105-111.

Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol. 2002; 89:3A-10A.

Zeng M, Cui W, Zhao Y, Liu Z, Dong S, Guo Y. Antiviral active peptide from oyster. Chinese J. Oceanol. Limnol. 2008 Aug 20; 26(3):307-312.

Downloads

Published

2014-06-17

How to Cite

Dumandan, N. G., Angelica, M. R. N., Belina-Aldemita, M. D., & Torio, M. A. O. (2014). Extraction And Characterization of Bioactive Peptides Derived from the Hydrolysates of Total Soluble Proteins of Pistachio Nuts (Pistacia vera L.). KIMIKA, 25(1), 1–10. https://doi.org/10.26534/kimika.v25i1.1-10

Issue

Section

Research Articles