Hydrolysis of Metal Ions from the Perspective of Proton Transport in Liquid Water


  • Len Herald V. Lim Institute of Chemistry, University of the Philippines, Quezon City




proton transfer, hydrolysis, hydrogen bonding, Grotthuss mechanism, QMCF-MD


The  dynamics  of  proton  transfer  reactions  still  persists  as  an  open  question  to  both experimentalists  and  theoreticians.  Theoretical  studies  on  liquid  water  indicate  that  the molecular  processes  involved  occur  at  timescales  transparent  to  conventional  detection.  In contemporary  models,  the  anomalous  diffusion  of  a  proton  in  liquid  water  appears  to  be closely  tied  to  how  hydrogen  bonding  patterns  evolve,  which  suggests  that  proton dissociation  proceed  only  if  certain  conditions  are  met:  structural  patterns  and  dynamics satisfied  over  a  network of hydrogen  bonded  molecules.  These  have  been  verified  through simulations of highly charged metal ions in aqueous solution in which quantum mechanical calculations  are  explicitly  invoked  to  allow  the  occurrence  of  hydrolytic  events. The  results obtained thereof have given insight into the proper evaluation of proton transfer events and how they can be understood in the context of many body interactions.


Baes CF, Mesmer RE. The Hydrolysis of Cations. New York: John Wiley and Sons; 1976.

Bhattacharjee A, Pribil AB, Randolf BR, Rode BR. Hydrolysis of As(III): a femtosecond process. Chem Phys Lett. 2009; 473:176-178.

Bolhuis PG, Dellago C, Chandler D. Sampling Ensembles of Deterministic Transition Pathways. Faraday Discuss. 1998; 110:421-436.

Brancato G, Tuckerman ME. A polarizable multistate empirical valence bond model for proton transport in aqueous solution. J Chem Phys. 2005; 122:224507-224518.

Car R, Parinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett. 1985; 55(22):2471-2474.

Coskuner O, Jarvis EAA, Allison TC. Water Dissociation in the Presence of Metal Ions. Angew Chemie. 2007; 119(41):7999-8001.

de Grotthuss CJT. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann Chim. 1806; 58:54-73.

Dellago C, Bolhuis PG, Csajka FS, Chandler D. Transition Path Sampling and the Calculation of Rate Constants. J Chem Phys. 1998; 108:1964-1977.

Eaves JD, Loparo JJ, Fecko CJ, Roberts ST, Tokmakoff A, Geissler PL. Hydrogen bonds in liquid water are broken only fleetingly. P Natl Acad Sci. 2005; 102(37):13019- 13022.

Gale GM, Gallot G, Hache F, Lascoux N. Femtosecond Dynamics of Hydrogen Bonds in Liquid Water: A Real Time Study. Phys Rev Lett. 1999; 82(5):1068-1071.

Harder E, Eaves JD, Tokmakoff A, Berne BJ. Polarizable molecules in the vibrational spectroscopy of water. P Natl Acad Sci. 2005; 102(33):11611-1616.

Keutsch FN, Saykally RJ. Water clusters: Untangling the mysteries of the liquid, one molecule at a time. P Natl Acad Sci. 2001; 98(19):10533-10540.

Kim J, Schmitt UW, Gruetzmacher JA, Voth GA, Scherer NE. The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. J Chem Phys. 2002; 116:737-746.

Laage D, Hynes JT. A Molecular Jump Mechanism of Water Reorientation, Science. 2006; 311(5762):832-835.

Lim LHL, Bhattacharjee A, Randolf BR, Rode BM. Hydrolysis of tetravalent group IV metal ions: an ab initio simulation study. Phys Chem Chem Phys. 2010; 12(39):12423-12426.

Marx D, Tuckerman ME, Hutter J, Parinello M. The nature of the hydrated excess proton in water. Nature. 1999; 397(6720):601-604.

Marx D. Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. Chem Phys Phys Chem. 2006; 7(9):1848-1870.

Moilanen DE, Fenn EE, Lin YS, Skinner JL, Bagchi B, Fayer MD. Water inertial reorientation: Hydrogen bond strength and the angular potential. P Natl Acad Sci. 2008; 105(14):5295-5300.

Rahman A, Stillinger FH. Molecular Dynamics Study of Liquid Water. J Chem Phys. 1971; 55:3336-3359.

Reid GD, Wynne K, Ultrafast Laser Technology and Spectroscopy. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley and Sons; 2000. P. 13644-13670.

Roberts ST, Petersen PB, Ramasesha K, Tokmakoff A, Ufimtsev IS, Martinez TJ. Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. P Natl Acad Sci. 2009; 106(13):15154-15159.

Rode BR, Hofer TS, Randolf BR, Schwenk C, Demetrios X, Vchirawongkwin V. Ab initio Quantum Mechanical Charge Field (QMCF) Molecular Dynamics – A QM/MM – MD Procedure for Accurate Simulations of Ions and Complexes. Theor Chem Acc. 2006; 115(2):77-85.

Sutmann G, Vallauri R. Dynamics of the hydrogen bonded network in liquid water. J Mol Liq. 2002; 98:215-226.

Tuckerman ME, Marx D, Parinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature. 2002; 417(6892):925-929.

Walbran S, Kornyshev AA. Proton transport in polarizable water. J Chem Phys. 2001; 114:10039-10048.

Weiner AM. Ultrafast Optics. New Jersey: John Wiley and Sons; 2009.

Wicke E, Eigen M, Ackermann T. Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z Phys Chem. 1954; 1(5):340-364.

Woutersen S, Bakker HJ. Ultrafast Vibrational and Structural Dynamics of the Proton in Liquid Water. Phys Rev Lett. 2006; 96(13):138305.

Zundel G, Metzger H. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z Phys Chem. 1968; 58(5):225-245.


How to Cite

Lim, L. H. V. (2013). Hydrolysis of Metal Ions from the Perspective of Proton Transport in Liquid Water. KIMIKA, 24(1), 25–31. https://doi.org/10.26534/kimika.v24i1.25-31



Review Articles