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In artificial chemistry (ACHEM), the objects (molecules) are data and the interactions (reactions) among them are driven by 

an algorithm. An object expresses its duality as it can appear as a machine (operator) or as a data (operand). Thus an object 
can process other objects or it can be processed. This dualism of objects enables us to implicitly define a constructive 

computational procedure using chemistry as metaphor to solve complex real-world problems. In this paper we introduce 

ACHEM as a distributed stochastic algorithm that simulates reaction systems of algorithmic objects inspired by natural 

chemical systems. Then we apply ACHEM to find solutions to the traveling salesman problem. Results show that ACHEM 
is an example of the successful use of a natural metaphor to design an optimization algorithm. 
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INTRODUCTION 

Combinatorial optimization problems such as the traveling 
salesman (TSP), shop floor control and scheduling (i.e., job­
shop scheduling), distribution of goods and services (i.e., 
vehicle routing), aircraft landing and scheduling, product design 
(i.e., VLSI layout), DNA sequence analysis, and many others 
are problems whose solutions are of real-world importance. 
Exact algorithms have been proposed to these problems but 
were proven inefficient for large problem instances. Because it 
has been proven that these problems belong to the class ofNP­
hard problems [1 ], heuristics and metaheuristics methodologies 
for computation provide practical solutions for large problem 
instances. 

Solutions to combinatorial optimization, using instances ofTSP 
as representative problems, have been studied extensively. 
Graph-based heuristics such as branch and bound [2], as well 
as multi-agent-based and nature-inspired algorithms such as 
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genetic algorithms [3], memetic algorithms [4-6], tabu search 
[7], simulated annealing [8], simulated jumping [9], neural 
networks [10], and ant colonies [11-13] have been used and 
shown to find optimal and near optimal solutions. 

In recent years, the chemical metaphor, called artificial 
chemistry (ACHEM), has emerged as a .computation paradigm 
[ 14-19]. Chemical and biochemical systems of living organisms 
have been shown to possess computational properties [20-22]. 
In an algorithmic chemistry, the objects (atoms or molecules) 
are data or solutions and the interactions (collisions or reactions) 
among objects are defined by an algorithm. The objects and 
their interactions to one another were used to solve several toy 
problems such as the generation of prime numbers, robot control 
[19], and number division [23]. 

In the current e ffort, we explored ACHEM to solve 
combinatorial problems using instances of TSP. We mapped 
Hamiltonian tours to artificial molecules, defined the cost of 
traversing the tours as molecular mass, and designed chemical 
reactions as functions for creating solutions to TSPs from 
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initially randomly generated molecules in a occasionally-stirred 

reaction tank. With these metaphors, we were able to find 

optimal and near-optimal solutions to TSP with the same 

efficiency as the known multi-agent-based heuristics. 

This paper is centered on the introduction of the basic concepts 

of ACHEM and on its application to combinatorial optimization 

problems represented by instances of the TSP. Here, we will 

present ACHEM as a distributed approach to combinatorial 

optimization based on the natural chemical systems by 

discussing ways of how information can be processed and 

created by a collection of artificial molecules floating in a 

simulated reactor tank. We will show, via mapping of molecules 

to Hamiltonian tours, relationship of molecular mass to 

molecule's rate of reaction, and the reaction algorithm, that 

ACHEM can also be used to solve combinatorial optimization 

problems. 

DEVELOPMENT OF ARTIFICIAL CHEMICAL 
SYSTEM 

In this section, we start with a brief definition of the TSP and a 

discussion on the basic concepts of ACHEM with a focus on 

solving the TSP. We then proceed to the development of 

algorithms that mimic chemical reactions resulting in 

information processing. The processing of infonnation happens 

in artificial reactor guided by reaction rules. A s  this simulation 

is inspired by the concepts of chemistry, we use the 

nomenclature of this science while cautioning the readers that 

they are analogical in nature only. 

The traveling salesman problem. TSP is formally defined as 

the problem offmding the shortest Hamiltonian cycle of a graph 

G (V, E). A graph is composed of a set of cities V = { v1, v2, • • •  , 

vJ, a path set E = { (vi' v) : vi, vi E V}, and a cost measure 

matrix C, where each element c is the cost measure associated ,, 
with path (v, v) E E . .A Hamiltonian cycle is a closed tour that 

I J 
visit each city once. We have a symmetr:ic TSP if c = c . If c 

1j jf I) 
* c for at least one c E C, then we have an asymmetric TSP. Jl 

Table 1. Instances of large TSP used in this research 
and the approximate time each would take if solved 

with a deterministic polynomial time algorithm. 

Number of Cost of Best 
Time 

Cities Tour 

10 500 4.03 X 10�5 S 

20 1000 312.87 days 
30 1500 9.35 x 1013 years 
40 2000 2.87 x 1028 years 
50 2500 I. 07 x 1046 years 

100 5000 Can not be 
computed anymore 

KlMlKA • Volume 19, Number 2 • December 2003 

In this research, we used ACHEM to solve the TSP instances 

listed in Table 1. These problems have known optimal solutions 

and each has computational complexity of n!, where n is the 

number of cities. Exact solutions to these problems become 

inefficient to run when n becomes very large. For example, it 

would take about 1.07 x 1043 millenniums for a deterministic 

polynomial time algorithm running on a 90 GHz P entium 4 PC 

to find all solutions to a 50-city TSP. This means that there is 

no deterministic polynomial time algorithm that so far exists 

that can solve TSP efficiently. Thus, we can only use 

nondeterministic polynomial (NP ) time solutions such as 

ACHEM to solve the TSP efficiently. This is the reason why 

combinatorial optimization problems such as the TSP is said 

to belong to NP class of problems. 

Basic concepts of artificial chemistry. In the physical world, 

chemical reactions happen under specific physical and structural 

conditions. Molecules carry some information specific to their 

composition (e.g., molecular weight and molecular structure) 

while the reaction between molecules causes changes to the 

composition of the reacting molecules. With this idea in mind, 

we see the composition of molecules as a kind of information 

storage while the reaction between them as a kind of information 

processing. The more molecules involved in the reaction and 

the faster the reaction, the more information is processed. 

Therefore, we can create an abstract system, similar to chemical 

systems, which is capable of information storage and 

processing. 

Formally, ACHEM is defined by a triple (M, R, A) where M is 

a set of artificial molecules, R is a set of reaction rules describing 

the interaction among molecules, and A is an algorithm driving 

the ACHEM system. The molecules in M may be abstract 

symbols [24], strings of characters [25-27], A-expression [15], 

binary strings [19, 28], numbers [18], or proofs [29]. In this 

paper, we introduce Hamiltonian tours as molecules that store 

solutions to TSP. 

The rules in R can be defined explicitly [24] or implicitly by 

using string matching and string concatenation [25, 27, 30], A­

calculus [15, 31], Turing machines [20], finite state machines 

or machine language [ 19], proof theory [31], matrix 

multiplication [28], or simple arithmetic operations [18]. In 

this paper, we present our reaction rule as a reordering algorithm 

that creates new molecules when other molecules collide. 

The algorithm A describes how the rules are applied to a soup 
of artificial molecules. The algorithm may simulate a well­

stirred abstract reaction tank (no topology) [15, 19, 25], an 

Euclidean discrete reaction vessel [24, 30], a continuous 3D 

space [32], or a self-organizing topology [33]. In this effort, 

our algorithm A simulates a topology-less reaction tank that 

partitions the soup into levels of reaction activities as a function 

of molecular mass. 
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Application of ACHEM to TSP. The vertices v; E V, Y i = 1, 
... , n are considered as the set of atoms in then-city TSP abstract 
world. These atoms exist in stable molecular forms that can be 
considered as Hamiltonian cycles. The set of artificial molecules 

M is the set of Hamiltonian cycles. Each of the molecules mE 
M is a fixed-length n-ary string m = {0111 ... In}" with the 
constraint that m contains only then permutation of cities taken 
n. This constraint assures us that m encodes a valid Hamiltonian 
cycle. The costfof traversing the Hamiltonian cycle (Equation 
1) is a function of the cost matrix C and can be regarded as the 
molecular mass of m. The molecular mass is directly 
proportional to the excitation energy of the molecule. 

n-1 

f = c,,J + L ci.i+I 
i�l 

(1) 

The reaction rules are all zero-order reversible (i.e., non­
catalytic) reactions of the form m1 + m2--+ m3 + m4• All collisions 
of two molecules m1 and m2 have unique outcomes, m3 and m4• 
Each collision can be represented as a function R: M x M--+ M 
x M. However, if the products of the reaction are the same as 
the reactants (i.e., m1 + m2--+ m1 + m2) then we have an elastic 
collision. 

Similar to the cycle crossover in genetic algorithms [34], the 
reaction rule R performs reordering under the constraint that 
each city comes from one reactant or the other. The reaction 
rule is described in Algorithm 1. 

Algorithm 1. Reaction Rule 
1. Let an integer l E [1 ,n] be the index of the city encoded in 

any molecule m. The indexing order does not matter (i.e. 
whether the index goes from left to right or vice-versa) as 

long as we are consistent throughout this algorithm. 
2. Take a random integer between 1 and nand assign it to I. 

Let /0= l. 
3. Taking the reactant m1, locate the lth atom in m1 and move 

it as the lth atom for m3• 
4. Take note of the /th atom in m2 and locate it in m1• Replace 

the value of l with the index of the atom found in m 1• 

5. Repeat steps 3 to 4 until the /th atom in m2 is the same as 
the fth atom in m1• 

6. For all indeces l with no atoms yet in m3, move the /th 
atom from reactant m1 as the lth atom in product m3• 

7. Repeat steps 2 to 6 for reactant m2 and product m4• 

In the above reaction rule, an elastic collision of the form 1711 + 

m1--+ m1 + m2 happens when the stopping criterion described 
in step 5 is reached during the first iteration. 

The reactor algorithm A operates on a soup of molecules S = 
{m1 , ... ,m11.�1}, II S II<< II M II- The development of Sis realized 
by iteratively applying steps 2 to 4 of the following algorithm: 

Table 2. Parallelism of real chemistry and ACHEM 
and the respective notations used. 

Real Chemistly ACHEM Notation 

Set of atoms Set of cities M 
An atom A city v 

A molecule A Hamiltonian cycle M 
Molecular mass Cost of tour F 

Reaction Algorithm 1 R 
Universe Soup s 

Chemical system Algorithm 2 A 

Algorithm 2. Reactor Algorithm 
1. Initialize the soup with II S II molecules selected randomly 

fromM. 
2. Using stochastic sampling with replacement, select two 

molecules m1 and m2 from S without removing them. 
3. Apply the reaction rule in Algorithm 1 for the two reactants 

1711 and m2 to produce the products m3 and m4• 
4. Decay the heavier molecules by removing them out of S 

and replace them with randomly selected molecules from 
M. 

5. Repeat steps 2 to 4 until the soup is nearly saturated with 
molecules of lower molecular mass. 

6. What remains is a soup of molecules that encode optimal 
or near-optimal solutions to TSP. 

One iteration of steps 2 to 4 will constitute one epoch in our 
ACHEM simulation time. The sampling procedure of step 2 of 

Algorithm 2 gives molecules with low molecular mass a higher 
probability to react or collide with other molecules. This mimics 
the level of excitation energy the molecule needs to overcome 
for it to react with another molecule. This means that the lighter 
the molecule, the higher the chance that it will collide with 
other molecules. In regards to TSP, the lower the cost of the 
Hamiltonian tour, the higher the chance that it will interact with 
another tour to create a new pair of tours. The parallelism 
between ACHEM and real chemistry and the list of notations 
used in this paper are summarized in Table 2. 

RESULTS AND DISCUSSION 

ACHEM efficiency and quality of solutions found. Table 3 
shows the minimum cost of Hamiltonian cycle and the actual 
computing time it took to solve each instance of the TSP. 
ACHEM found the exact best tour in 86 sec for the l 0-city 
TSP. At small problem instances such as the 10-city TSP, 
ACHEM is inefficient (the deterministic polynomial time 
algorithm can solve this problem in only 4 .03 x I o-s second on 
the same PC). However, for large problem instances, ACHEM 
was able to find near-optimal solutions under reasonable amount 
of time. 
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Table 3. The quality of solutions found by ACHEM 
and ACHEM's efficiency. 

Number Cost of Best 
Cost ofTour ACHEM 

of Cities Tour 
Found by Running 
ACHEM Time (s) 

10 500 500 86 
20 1,000 1,013 520 
30 1,500 1,533 613 
40 2,000 2,053 730 
50 2,500 2,567 815 

100 5,000 5,180 1,360 
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Fig. I. The development of the soup in a reactor tank that solves 

the I 0-City TSP 

100 

Soup development. Figure 1a shows the development of the 
soup in a reactor tank that solves the 1 0-City TSP. The exact 
optimum Hamiltonian cycle was found at the fourth simulation 
epoch while the soup was developed into having molecules 
that store better Hamiltonian cycles. The downward spikes in 
the maximum line shows that during the simulation, the soup 
was almost saturated with molecules of! ower molecular mass. 

This observation was collaborated by Figure 1 b that shows the 
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Fig. 2. The development of the soup in a reactor tank that solves 
the I 00-City TSP 

tank's saturation level of molecules with lower molecular mass. 
The peaks in the graph coincide with the downward spikes in 

the maximum line of Figure Ia. This signifies that ACHEM 
was able to find other Hamiltonian cycles of almost optimal 
costs during the simulation epoch where the peaks and spikes 

occur. 

The respective development of the soup for the 20- to 100-

City TSPs, respectively, show the same behavior with that of 

Figure Ia indicating that ACHEM is robust and its efficiency 

is independent on the size of the problem being solved. 

Similarly, the tank's saturation level of molecules with lower 
molecular mass for 20- through 1 00-City TSPs suggest that 

ACHEM was able to find other solutions of similar minimal 
costs despite of the varying size of the problem (see Figure 2 
showing only the last I 00 epochs for the 500-epoch run for the 
1 00-City TSP). 

Effects of reversible reaction. The suddenness of peaks in 

saturation graphs presented above may be attributed to the 
nature of the reaction rule used in the ACHEM experiments. A 
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soup of molecules saturated with higher molecular mass, 
depending on the frequency of collisions among molecules, 
may suddenly develop into a soup saturated with molecules of 
lower molecular mass at one time and then revert into a soup 

of molecules with higher molecular mass at another time. Take 

for example a hypothetical universe consisting only of four 
atoms {x

1
, x2, x

3
, x

4
} where only two atoms exist at a time 

following a reversible chemical reaction of the form x
i 

+ x2 � 

x
3 

+ x4• Let the atoms x
1 

and x2 have low molecular mass and 

the atoms x
3 

and x4 have high molecular mass. If the frequency 

of collision between the atoms is high (i.e., the universe is 
small), the universe will be experiencing a series of alternating 

shifts between sudden low and sudden high masses. If the 
frequency of collision between atoms is low (i.e., the universe 

is big), the universe will be experiencing a series of alternating 

shifts between plateuing low and plateuing high masses. 

To avoid the disrupting effects of the reaction rule on the 

solutions being solved by the artificial chemical system, it is 

recommended that the reaction rule be designed to keep the 

reactants to the product side of the reaction equation. For 

example, a second-order catalytic reaction rule of the form x
i 

+ x2 + X� x
i 

+ x
2 

+ x
3 

+ x4 that can initiate a mass-action 
kinetics might be a better one than the rule that we used in this 

study. Here, the concentration of the implicit substrate X might 

be kept constant. The production of new atoms x
3 

and x4 might 

create an implicit competition for space which may lead to an 

evolutionary process. We will deal with this kind of reaction 

rule in our future research. 

SUMMARY 

In this paper, we have shown that artificial chemical objects 

can store information while the reactions among them can 

initiate information processing. We have designed an artificial 

chemical system that is capable of solving large instances of 

combinatorial optimization problems such as the TSP. By giving 

computational metaphor to molecular properties as solutions 

and to molecular reactions as ways to create new solutions, our 

ACHEM system was able to develop an artificial soup of 

molecules in a reactor tank that store optimal and near-optimal 

solutions to TSP. We have shown that ACHEM can find quality 

solutions to T SP within a reasonable amount of time. 
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