Recent Advances in Theoretical and Physical Aspects of NMR Chemical Shifts

  • Angel C. De Dios Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, D. C.
  • Cynthia Juan Jameson Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois
Keywords: nuclear magnetic shielding, ab initio, relativistic, intermolecular effects, tensor, isotope shift

Abstract

In the first part of this review, theoretical aspects of nuclear magnetic shielding include (a) general theory, for example, newly developed approaches in relativistic theory of nuclear shielding, the relation between the spin-rotation tensor and shielding in relativistic theory, ab initio methods for treating open shell systems and a complete theory of chemical shifts in paramagnetic systems, the link between the definitions of the elusive concepts aromaticity and anti-aromaticity and the magnetic properties: the magnetizability tensor and the nuclear magnetic shielding tensor via delocalized electron currents and electron current maps, (b) ab initio and DFT calculations, both relativistic and non-relativistic, for various nuclei in various molecular systems using various levels of theoretical treatment. Physical aspects include (a) anisotropy of the shielding tensor, usually from solid state measurements, and calculations to support these, (b) shielding surfaces and rovibrational averaging, paying special attention to the sensitive relationship between shielding and bond angles or torsion angles that makes shielding such a powerful tool for structural/conformational determination in macromolecules, (c) chemical shifts that arise from isotopic substitution of NMR nucleus or neighboring nuclei, (d) intermolecular effects on nuclear shielding, and (e) absolute shielding scales.

References

Aimola TJ, Lima DJP, Dias LC, Tormena CF, Ferreira MAB. 1H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies. Org. Biomol. Chem. 2015; 13:2140-2145.

Alkan F, Dybowski C. Calculation of chemical-shift tensors of heavy nuclei: A DFT/ZORA investigation of 199Hg chemical-shift tensors in solids, and the effects of cluster size and electronic-state approximations. Phys. Chem. Chem. Phys. 2014; 16:14298-14308.

Amini SK. A systematic investigation of cooperativity between two types of hydrogen bonding in the nonlinear clusters of an aromatic molecule: pyrazole. J. Mol. Struct. 2014; 1068:112-123.

Anafcheh M, Ghafouri R. BN belts: From small fullerenes to nanocapsules. J. Cluster Sci. 2014; 25:1173-1185.

Arshadi S, Bekhradnia AR, Mohammadi E, Asghari A. Disiline-doped boron nitride nanotubes: A computational study. J. Struct. Chem. 2014; 55:629-635

Asakura T, Ohata T, Kametani S, Okushita K, Yazawa K, Nishiyama Y, Nishimura K, Aoki A, Suzuki F, Kaji H, Ulrich AS, Williamson MP. Intermolecular packing in B. mori silk fibroin: Multinuclear NMR study of the model peptide (ala-gly)(15) defines a heterogeneous antiparallel antipolar mode of assembly in the silk II form. Macromolecules 2015; 48:28-36.

Autschbach J. Perspective: Relativistic effects. J. Chem. Phys. 2012; 136:150902.

Bagno A, Saielli G. Addressing the stereochemistry of complex organic molecules by density functional theory-NMR. WIREs-Comput. Molec. Sci. 2015; 5:228-240.

Baias M, Lesage A, Aguado S, Canivet J, Moizan-Basle V, Audebrand N, Farrusseng D, Emsley L. Superstructure of a substituted zeolitic imidazolate metal-organic framework determined by combining proton solid-state NMR spectroscopy and DFT calculations. Angew. Chemie-Intl Ed. 2015; 54:5971-5976.

Bassanetti I, Comotti A, Sozzani P, Bracco S, Calestani G, Mezzadri F, Marchio L. Porous molecular crystals by macrocyclic coordination supramolecules. J. Am. Chem. Soc. 2014; 136:14883-14895.

Bevilaqua RCA, Rigo VA, Verissimo-Alves M, Miranda CR. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study. J. Chem. Phys. 2014; 141:204705.

Böhler B, Günther H. The aggregation behavior of butyllithium in diethyl ether in the presence of LiBr, LiClO4, and phenyllithium: A deuterium-induced secondary 6Li NMR isotope-effect study. Helv. Chim. Acta 2015; 98:427-446.

Böhm K, Banert K, Auer AA. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings. Molecules 2014; 19:5301-5312.

Boobalan MS, Ramalingam S, Amaladasan M, Tamilvendan D, Prabhu GV, Bououdina M. A computational perspective on equilibrium geometry, vibrational spectra and electronic structure of antioxidant active mannich base 1-[(pyridin-2-yl amino) methyl] pyrrolidine-2,5-dione. J. Mol. Struct. 2014; 1072:153-172.

Bouty O, Delaye JM, Beuneu B, Charpentier T. Modelling borosilicate glasses of nuclear interest with the help of RMC, WAXS, neutron diffraction and 11B NMR. J. Non Cryst. Solids 2014; 401:27-31.

Bryce DL, Viger-Gravel J. Solid-state NMR study of halogen-bonded adducts. Top. Curr. Chem. 2015; 358:183-203.

Burgess KMN, Bryce DL. On the crystal structure of the vaterite polymorph of CaCO3: A 43Ca solid-state NMR and computational assessment. Solid State Nucl. Magn. Reson. 2015; 65:75-83.

Cadars S, Allix M, Brouwer DH, Shayib R, Suchomel M, Garaga MN, Rakhmatullin A, Burton AW, Zones SI, Massiot D, Chmelka BF. Long- and short-range constraints for the structure determination of layered silicates with stacking disorder.. Chem. Mater. 2014; 26:6994-7008.

Carnevale D, Ashbrook SE, Bodenhausen G. Solid-state NMR measurements and DFT calculations of the magnetic shielding tensors of protons of water trapped in barium chlorate monohydrate. RSC Advances 2014; 4:56248-56258.

Catalano J, Murphy A, Yao Y, Alkan F, Zurnbulyadis N, Centeno SA, Dybowski C. 207Pb and 119Sn solid-state NMR and relativistic density functional theory studies of the historic pigment lead-tin yellow type I and its reactivity in oil paintings. J. Phys. Chem. A 2014; 118:7952-7958.

Catalano J, Murphy A, Yao Y, Yap GPA, Zumbulyadis N, Centeno SA, Dybowski C. Coordination geometry of lead carboxylates - spectroscopic and crystallographic evidence. Dalton Trans. 2015; 44:2340-2347.

Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy. Environ. Sci. Technol. 2015; 49:1964-1971.

Cheng L, Gauss J, Stanton JF. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J. Chem. Phys. 2013; 139:054105.

Chu M, Scioneaux AN, Hartley CS. Solution-phase dimerization of an oblong shape-persistent macrocycle. J. Org. Chem. 2014; 79:9009-9017.

Cormanich RA, Rittner R, Freitas MP, Bühl M. The seeming lack of CFHO intramolecular hydrogen bonds in linear aliphatic fluoroalcohols in solution. Phys. Chem. Chem. Phys. 2014; 16:19212-19217.

Cormanich RA, Rittner R, O'Hagan D, Bühl M. Analysis of CFFC interactions on cyclohexane and naphthalene frameworks. J. Phys. Chem. A 2014; 118:7901-7910.

Dawson DM, Ashbrook SE. Investigating relationships between the crystal structure and 31P isotropic chemical shifts in calcined aluminophosphates. J. Phys. Chem. C 2014; 118:23285-23296.

de Dios AC, Jameson CJ. Recent advances in nuclear shielding calculations. In Annual Reports on NMR Spectroscopy, Webb GA, editor. London: Elsevier Ltd; 2012. Vol. 77. p. 1-80.

de Dios AC, Pearson JG, Oldfield E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 1993; 260:1491-1496.

Dervisoglu R, Middlemiss DS, Blanc F, Lee Y, Morgan D, Grey CP. Joint experimental and computational 17O and 1H solid state NMR study of Ba2In2O4(OH)2 structure and dynamics. Chem. Mater. 2015; 27:3861-3873.

Diehl BG, Watts HD, Kubicki JD, Regner MR, Ralph J, Brown NR. Towards lignin-protein crosslinking: Amino acid adducts of a lignin model quinone methide. Cellulose 2014; 21:1395-1407.

Engelbrecht L, Murray P, Koch KR. Isotope effects in 195Pt NMR spectroscopy: Unique 35/37Cl- and 16/18O-resolved "fingerprints" for all [PtCl6-n(OH)n]2- (n=1-5) anions in an alkaline solution and the implications of the trans influence. Inorg. Chem. 2015; 54:2752-2764.

Fedorov SV, Rusakov YY, Krivdin LB. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections. Magn. Reson. Chem. 2014; 52:699-710.

Filip X, Filip C. Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of the quercetin solid forms. Solid State Nucl. Magn. Reson. 2015; 65:21-28.

Fliegl H, Pichierri F, Sundholm D. Antiaromatic character of 16 pi electron octaethylporphyrins: Magnetically induced ring currents from DFT-GIMIC calculations. J. Phys. Chem. A 2015; 119:2344-2350.

Flygare WH. Spin—Rotation interaction and magnetic shielding in molecules. J. Chem. Phys. 1964; 41:793-800.

Gambuzzi E, Charpentier T, Menziani MC, Pedone A. Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses. Chem. Phys. Lett. 2014; 612:56-61.

Garay PG, Martin OA, Scheraga HA, Vila JA. Factors affecting the computation of the 13C shielding in disaccharides. J. Comput. Chem. 2014; 35:1854-1864.

Garbacz P, Jackowski K. NMR shielding of 3He in the micropores of zeolites. Micro. Meso. Mater. 2015; 205:52-55.

Gendron F, Sharkas K, Autschbach J. Calculating NMR chemical shifts for paramagnetic metal complexes from first-principles. J. Phys. Chem. Lett. 2015; 6:2183-2188.

Gerber IC, Jolibois F. Theoretical gas to liquid shift of 15N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations. Phys. Chem. Chem. Phys. 2015; 17:12222-12227.

Ghafouri R, Ektefa F, Zahedi M. Characterization of hydrogen bonds in the end-functionalized single-wall carbon nanotubes: A DFT study. Nano 2015; 10:1550036.

Guo C, Hou G, Lu X, O'Hare B, Struppe J, Polenova T. Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. J. Biomol. NMR 2014; 60:219-229.

Hansen PE, Borisov EV, Lindon JC. Determination of the tautomeric equilibria of pyridoyl benzoyl beta-diketones in the liquid and solid state through the use of deuterium isotope effects on 1H and 13C NMR chemical shifts and spin coupling constants. Spectrochim. Acta A 2015; 136:107-112.

Hartman JD, Beran GJO. Fragment-based electronic structure approach for computing nuclear magnetic resonance chemical shifts in molecular crystals. J. Chem. Theor. Comput. 2014; 10:4862-4872.

He X, Zhu T, Wang X, Liu J, Zhang JZH. Fragment quantum mechanical calculation of proteins and its applications. Acc. Chem. Res. 2014; 47:2748-2757.

Hill DE, Vasdev N, Holland JP. Evaluating the accuracy of density functional theory for calculating 1H and 13C NMR chemical shifts in drug molecules. Comput. Theor. Chem. 2015; 1051:161-172.

Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C . Density functional investigation of intermolecular effects on 13C NMR chemical-shielding tensors modeled with molecular clusters. J. Chem. Phys. 2014; 141:164121.

Jameson CJ, de Dios AC. Theoretical and physical aspects of nuclear shielding. In Nuclear Magnetic Resonance, Kamienska-Trela K, editor. London: Royal Society of Chemistry; 2013. Vol. 42. p. 45-77.

Jameson CJ, de Dios AC. Theoretical and physical aspects of nuclear shielding. In Nuclear Magnetic Resonance, Kamienska-Trela K, editor. London: Royal Society of Chemistry; 2014. Vol. 43. p. 49-80.

Jameson CJ, de Dios AC. Theoretical and physical aspects of nuclear shielding. In Nuclear Magnetic Resonance, Kamienska-Trela K, editor. London: Royal Society of Chemistry; 2015. Vol. 44. p. 46-75.

Jankowska M, Kupka T, Stobinski L, Kaminsky J. DFT studies on armchair (5,5) SWCNT functionalization. modification of selected structural and spectroscopic parameters upon two-atom molecule attachment. J. Molec. Graph. Model. 2015; 55:105-114.

Jaszunski M, Demissie TB, Ruud K. Spin-rotation and NMR shielding constants in XF molecules (X = B, Al, Ga, In, and Tl). J. Phys. Chem. A 2014; 118:9588-9595.

Jokisaari J, Zhu J. Xenon NMR of phase biaxiality in liquid crystals. Magn. Reson. Chem. 2014; 52:556-559.

Kamihara T, Mizuno T, Shoji A, Takegoshi K. Conformational characterization of left-handed helices in poly(beta-benzyl L-aspartate) by 13C chemical shift anisotropy using solid-state NMR. Macromolecules 2015; 48:629-636.

Karhu AJ, Pakkanen OJ, Rautiainen JM, Oilunkaniemi R, Chivers T, Laitinen RS. Experimental and computational 77Se NMR investigations of the cyclic eight-membered selenium imides 1,3,5,7-Se4(NR)4 (R = Me, tBu) and 1,5-Se6(NMe)2. Inorg. Chem. 2015; 54:4990-4997.

Karjalainen J, Vaara J, Straka M, Lantto P. Xenon NMR of liquid crystals confined to cylindrical nanocavities: A simulation study. Phys. Chem. Chem. Phys. 2015; 17:7158-7171.

Keal TW, Tozer DJ. The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. J. Chem. Phys., 2003, 119, 3015-3024.

Keal TW, Tozer DJ. A semiempirical generalized gradient approximation exchange-correlation functional. J. Chem. Phys. 2004; 121:5654-5660.

Kessler J, Dracinsky M, Bour P. Determination of absolute configuration in chiral solvents with nuclear magnetic resonance. A combined molecular Dynamics/Quantum chemical study. J. Phys. Chem. A 2015; 119:5260-5268.

Kim G, Griffin JM, Blanc F, Haile SM, Grey CP. Characterization of the dynamics in the protonic conductor CsH2PO4 by 17O solid-state NMR spectroscopy and first-principles calculations: Correlating phosphate and protonic motion. J. Am. Chem. Soc. 2015; 137:3867-3876.

Kleinpeter E, Koch A, Schulz S, Wacker P. Interplay of para- and diatropic ring currents [(anti)aromaticity] of macrocyclic rings subject to conformational influences, further annelation and hydrogenation of aromatic ring moieties. Tetrahedron 2014; 70:9230-9239.

Kleinpeter E, Kriiger S, Koch A. Anisotropy effect of three-membered rings in 1H NMR spectra: Quantification by TSNMRS and assignment of the stereochemistry. J. Phys. Chem. A 2015; 119:4268-4276.

Kleinpeter E, Michaelis M, Koch A. Are para-nitro-pyridine N-oxides quinonoid or benzenoid? an answer given by spatial NICS (TSNMRS). Tetrahedron 2015; 71:2273-2279.

Kobayashi T, Gupta S, Caporini MA, Pecharsky VK, Pruski M. Mechanism of solid-state thermolysis of ammonia borane: A 15N NMR study using fast magic-angle spinning and dynamic nuclear polarization. J. Phys. Chem. C 2014; 118:19548-19555.

Komasa A, Katrusiak A, Kazmierczak M, Dega-Szafran Z, Szafran M. Spectroscopic, structural and theoretical investigation of bis(4-trimethylammoniumbenzoate) hydroiodide hydrate. Spectrochim. Acta A 2015; 136:1149-1156.

Komorovsky S, Repisky M, Malkin E, Ruud K, Gauss J. Communication: The absolute shielding scales of oxygen and sulfur revisited. J. Chem. Phys. 2015; 142:091102.

Kong X, Tang A, Wang R, Ye E, Terskikh V, Wu G. Are the amide bonds in N-acyl imidazoles twisted? A combined solid-state 17O NMR, crystallographic, and computational study. Can. J. Chem. 2015; 93:451-458.

Kubica D, Gryff-Keller A. Orotic acid in water solution, a DFT and 13C NMR spectroscopic study. J. Phys. Chem. B 2015; 119:5832-5838.

Kusumi R, Kimura F, Kimura T. Determination of 31P chemical shift tensor from microcrystalline powder by using a magnetically oriented microcrystal array. Crystal Growth & Design 2015; 15:718-722.

Lazzeretti P. Invariance of molecular response properties under a coordinate translation. Intl. J. Quantum Chem. 2014; 114:1364-1392.

Leniak A, Jazwinski J. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands. J. Mol. Struct. 2015; 1083:336-342.

Li M, Yehl J, Hou G, Chatterjee PB, Goldbourt A, Crans DC, Polenova T. NMR crystallography for structural characterization of oxovanadium(V) complexes: Deriving coordination geometry and detecting weakly coordinated ligands at atomic resolution in the solid state. Inorg. Chem. 2015; 54:1363-1374.

Li Z, Xiao Y, Liu W. On the spin separation of algebraic two-component relativistic Hamiltonians. J. Chem. Phys. 2012; 137:154114.

Li Z, Xiao Y, Liu W. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties. J. Chem. Phys. 2014; 141:054111.

Liu W. Advances in relativistic molecular quantum mechanics. Phys. Rep. 2014; 537:59-89.

Liu W. Perspective: Relativistic Hamiltonians. Int. J. Quantum Chem. 2014; 114:983-986.

Liu W. Effective Quantum Electrodynamics Hamiltonians, a Tutorial Review. Int. J. Quantum Chem. 2015; 115:6310640.

Liu Y, Junk T, Liu Y, Tzeng N, Perkins R. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT. J. Mol. Struct. 2015; 1086:43-48.

Lynch BJ, Fast PL, Harris M, Truhlar DG. Adiabatic connection for kinetics. J. Phys. Chem. A 2000; 104:4811–4815.

Makulski W. 129Xe and 131Xe nuclear magnetic dipole moments from gas phase NMR spectra. Magn. Reson. Chem. 2015; 53:273-279.

Makulski W. 83Kr nuclear magnetic moment in terms of that of 3He. Magn. Reson. Chem. 2014; 52:430-434.

Maldonado AF, Aucar GA. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms. J. Phys. Chem. A 2014; 118:7863-7875.

Maldonado AF, Aucar GA, Melo JI . Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4-nYn (n=0-4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds. J. Molec. Model. 2014; 20:2417.

Martin B, Autschbach J. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules. J. Chem. Phys. 2015; 142:054108.

Merlet C, Forse AC, Griffin JM, Frenkel D, Grey CP. Lattice simulation method to model diffusion and NMR spectra in porous materials. J. Chem. Phys, 2015; 142:094701.

Michaelis VK, Keeler EG, Ong T, Craigen KN, Penzel S, Wren JEC, Kroeker S, Griffin RG. Structural insights into bound water in crystalline amino acids: Experimental and theoretical 17O NMR. J. Phys. Chem. B 2015; 119:8024-8036.

Monaco G, Della Porta P, Jablonski M, Zanasi R. Topology of the magnetically induced current density and proton magnetic shielding in hydrogen bonded systems. Phys. Chem. Chem. Phys. 2015; 17:5966-5972.

Monserrat B, Needs RJ, Pickard CJ. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple. J. Chem. Phys. 2014; 141:134113.

Munoz-Castro A. Axis-dependent magnetic behavior of C60 and C6010+. consequences of spherical aromatic character. Chem. Commun. 2015; 51:10287-10290.

Nieradka M, Kupka T. Sensitivity of noble gas NMR parameters to the heterocyclic ring proximity. density functional theory studies of Ne-furan and Ar-furan complexes. Chem. Heterocyc. Compounds 2014; 50:429-437.

Nimmo II JP, Kroll P. First-principles calculations and analysis of 29Si nuclear magnetic resonance chemical shifts in silicon oxycarbide ceramics. J. Phys. Chem. C 2014; 118:29952-29961.

Nozirov F, Kupka T, Stachow M. Theoretical prediction of structural, vibrational and NMR parameters of plastic optical fiber (POF) material precursors. Cis and trans perhydro- and perfluoro-2-methylene-4,5-dimethyl-1,3-dioxolanes. J. Molec. Graph. Model. 2014; 52:36-45.

O'Keefe CA, Johnston KE, Sutter K, Autschbach J, Gauvin R, Trebosc J, Delevoye L, Popoff N, Taoufik M, Oudatchin K, Schurko W. An investigation of chlorine ligands in transition-metal complexes via 35Cl solid-state NMR and density functional theory calculations. Inorg. Chem. 2014; 53:9581-9597.

Oliveira LBA, Colherinhas G, Fonseca TL, Castro MA. Spectroscopic properties of vitamin E models in solution. Chem. Phys. Lett. 2015; 628:49-53.

Ozcan N, Mares J, Sundholm D, Vaara J. Characteristic spectral patterns in the 13C nuclear magnetic resonance spectra of hexagonal and crenellated graphene fragments. Phys. Chem. Chem. Phys. 2014; 16:22309-22320.

Paluch P, Pawlak T, Oszajca M, Lasocha W, Potrzebowski MJ. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR crystallography approach. Solid State Nucl. Magn. Reson. 2015; 65:2-11.

Pandey MK, Malon M, Ramamoorthy A, Nishiyama Y. Composite-180 degrees pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy. J. Magn. Reson. 2015; 250:45-54.

Peksa M, Lang J, Stallmach F. 13C NMR study of diffusion anisotropy of carbon dioxide adsorbed in nanoporous DMOF-1. Micro. Meso. Mater. 2015; 205:11-15.

Pelloni S, Monaco G, Della Porta P, Zanasi R, Lazzeretti P. Delocalized currents without a ring of bonded atoms: Strong delocalized electron currents induced by magnetic fields in noncyclic molecules. J. Phys. Chem. A 2014; 118:3367-3375.

Pennanen TO, Vaara J. Nuclear magnetic resonance chemical shift in an arbitrary electronic spin state. Phys. Rev. Lett. 2008; 100:133002.

Pichumani K, George G, Hebbar S, Chatterjee B, Raghothama S. Effects of hydrogen bonding on amide-proton chemical shift anisotropy in a proline-containing model peptide. Chem. Phys. Lett. 2015; 627:126-129.

Pindelska E, Sokal A, Szeleszczuk L, Pisklak DM, Kolodziejski W. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids. J. Pharm. Biomed. Anal. 2014; 100:322-328.

Pindelska E, Szeleszczuk L, Pisklak DM, Mazurek A, Kolodziejski W. Solid-state NMR as an effective method of polymorphic analysis: Solid dosage forms of clopidogrel hydrogensulfate. J. Pharm. Sci. 2015; 104:106-113.

Presti D, Pedone A, Menziani MC. Unraveling the polymorphism of [(p-cymene)Ru(N-INA)Cl2] through dispersion-corrected DFT and NMR GIPAW calculations. Inorg. Chem. 2014; 53:7926-7935.

Puzzarini C, Cazolli G, Harding ME, Vazquez J, Gauss J. The hyperfine structure in the rotational spectra of D217O and HD17O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen, J. Chem. Phys. 2015; 142:124308

Ramsey NF. Magnetic shielding of nuclei in molecules. Phys. Rev. 1950; 78:699-703.

Reddy GNM, Cook DS, Iuga D, Walton RI, Marsh A, Brown SP. An NMR crystallography study of the hemihydrate of 2 ', 3 '-O-isopropylidineguanosine. Solid State Nucl. Magn. Reson. 2015; 65:41-48.

Ren J, Eckert H. Intermediate role of gallium in oxidic glasses: Solid state NMR structural studies of the Ga2O3-NaPO3 system. J. Phys. Chem. C 2014; 118:15386-15403.

Ren P, Zheng A, Xiao J, Pan X, Bao X. Exploring the ring current of carbon nanotubes by first-principles calculations. Chem. Sci. 2015; 6:902-908.

Reynolds RD, Shiozaki T. Fully relativistic self-consistent field under a magnetic field. Phys. Chem. Chem. Phys. 2015; 17:14280-14283.

Rezler M, Zolek T, Wolska I, Maciejewska D. Structural aspects of intermolecular interactions in the solid state of 1,4-dibenzylpiperazines bearing nitrile or amidine groups. Acta Crystallog. B 2014; 70:820-827.

Rouf SA, Mares J, Vaara J. 1H chemical shifts in paramagnetic Co(II) pyrazolylborate complexes: A first-principles study. J. Chem. Theor. Comput. 2015; 11:1683-1691.

Saielli G, Bini R, Bagno A. Computational 19F NMR. 2. Organic compounds. RSC Advances 2014; 4:41605-41611.

Saielli G, Bagno A, Castiglione F, Simonutti R, Mauri M, Mele A. Understanding cage effects in imidazolium ionic liquids by 129Xe NMR: MD simulations and relativistic DFT calculations. J. Phys. Chem. B 2014; 118:13963-13968.

Samultsev DO, Semenov VA, Krivdin LB. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles - a gateway to better agreement with experiment at lower computational cost. Magn. Reson. Chem. 2014; 52:222-230.

Sas EB, Kurt M, Karabacak M, Poiyamozhi A, Sundaraganesan N. FT-IR, FT-raman, dispersive raman, NMR spectroscopic studies and NBO analysis of 2-bromo-1H-benzimidazol by density functional method. J. Mol. Struct. 2015; 1081:506-518.

Sattler A, Zuzek AA, Parkin G. Molecular structure of W(PMe3)3H6 in the solid state and in solution. Inorg. Chim. Acta, 2014, 422, 102-108.

Semenov VA, Samultsev DO, Krivdin LB. Solvent effects in the GIAO-DFT calculations of the 15N NMR chemical shifts of azoles and azines. Magn. Reson. Chem. 2014; 52:686-693.

Seymour VR, Eschenroeder ECV, Wright PA, Ashbrook SE. An NMR crystallographic approach to monitoring cation substitution in the aluminophosphate STA-2. Solid State Nucl. Magn. Reson. 2015; 65:64-74.

Shin K, Moudrakovski IL, Davari MD, Alavi S, Ratcliffe CI, Ripmeester JA. Crystal engineering the clathrate hydrate lattice with NH4F. Crystengcomm 2014; 16:7209-7217.

Soltanali S, Halladj R, Ektefa F. A computational exploration into isomorphously substituted effects on hydrogen electric field gradient and chemical shielding tensors in the H-ZSM-5 zeolite. Asia-Pacific J. Chem. Eng. 2014; 9:574-580.

Soncini A, Van den Heuvel W. Communication: Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting. J. Chem. Phys. 2013; 138:021103.

Stefanovich EV, Truong TN. A simple method for incorporating Madelung field effects into ab initio embedded cluster calculations of crystals and macromolecules. J. Phys. Chem. B 1998; 102:3018-3022.

Stueber D. The embedded ion method: A new approach to the electrostatic description of crystal lattice effects in chemical shielding calculations. Concepts Magn. Reson. A 2006; 28:347-368.

Stone AJ. Distributed multipole analysis, or how to describe a molecular charge distribution . Chem. Phys. Lett. 1981; 83:233-239.

Stone AJ, Alderton M. Distributed multipole analysis. Methods and applications. Mol. Phys. 1985; 56:1047-1064.

Struppe J, Zhang Y, Rozovsky S. 77Se chemical shift tensor of L-selenocystine: Experimental NMR measurements and quantum chemical investigations of structural effects. J. Phys. Chem. B 2015; 119: 3643-3650.

Sun Q, Xiao Y, Liu W. Exact two-component relativistic theory for NMR parameters: General formulation and pilot application. J. Chem. Phys. 2012; 137:174105.

Sykina K, Bureau B, Le Polles L, Roiland C, Deschamps M, Pickard CJ, Furet E. A combined 77Se NMR and molecular dynamics contribution to the structural understanding of the chalcogenide glasses. Phys. Chem. Chem. Phys. 2014; 16:17975-17982.

Szafran M, Komasa A, Ostrowska K, Katrusiak A, Dega-Szafran Z. Spectral and structural studies of dimethylphenyl betaine hydrate. Spectrochim. Acta A 2015; 136:1216-1226.

Takeda M, Miyanoiri Y, Terauchi T, Yang C, Kainosho M. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. J. Magn. Reson. 2014; 241:148-154.

Tarasov VP, Kirakosyan GA, German KE. Oxygen isotope effect on NMR parameters of pertechnetate anion TcO4-. Russ. J. Phys. Chem. B 2015; 9:185-192.

Teale AM, Lutnas OB, Helgaker T, Tozer DJ, and Gauss J. Benchmarking density-functional theory calculations of NMR shielding constants and spin–rotation constants using accurate coupled-cluster calculations. J. Chem. Phys. 2013; 138:024111.

Tian Y, Lu GJ, Marassi FM, Opella SJ. Structure of the membrane protein MerF, a bacterial mercury transporter, improved by the inclusion of chemical shift anisotropy constraints. J. Biomol. NMR 2014; 60:67-71.

Van den Heuvel W, Soncini A. NMR chemical shift as analytical derivative of the Helmholtz free energy. J. Chem. Phys. 2013; 138:054113.

Vemulapalli PBS, Police N, Bharatam J. 129Xe NMR investigation of the anisotropic environment of a thermotropic nematic liquid crystal 4-cyano-4 '-pentylbiphenyl. Molec. Cryst. Liq. Cryst. 2015; 607:70-77.

Vicha J, Foroutan-Nejad C, Pawlak T, Munzarova ML, Straka M, Marek R. Understanding the electronic factors responsible for ligand spin-orbit NMR shielding in transition-metal complexes. J. Chem. Theor. Comput. 2015; 11:1509-1517.

Viesser RV, Ducati LC, Autschbach J, Tormena CF. Effects of stereoelectronic interactions on the relativistic spin-orbit and paramagnetic components of the 13C NMR shielding tensors of dihaloethenes. Phys. Chem. Chem. Phys. 2015; 17:19315-19324 .

Vogt FG, Williams GR, Strohmeier M, Johnson MN, Copley RCB. Solid-state NMR analysis of a complex crystalline phase of ronacaleret hydrochloride. J. Phys. Chem. B 2014; 118:10266-10284 .

Walder BJ, Dey KK, Davis MC, Baltisberger JH, Grandinetti PJ. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids. J. Chem. Phys. 2015; 142:014201.

Weber J, Schmedt auf der Günne J. Calculation of NMR parameters in ionic solids by an improved self-consistent embedded cluster method. Phys. Chem. Chem. Phys. 2010; 12:583-603.

Widdifield CM, Perras FA, Bryce DL. Solid-state 185/187Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: Chemical shift anisotropy, NMR crystallography, and a metal-metal bond. Phys. Chem. Chem. Phys. 2015; 17:10118-10134.

Wischert R, Florian P, Coperet C, Massiot D, Sautet P. Visibility of al surface sites of gamma-alumina: A combined computational and experimental point of view. J. Phys. Chem. C 2014; 118:15292-15299.

Wolf P, Valla M, Rossini AJ, Comas-Vives A, Nunez-Zarur F, Malaman B, Lesage A, Emsley L, Coperet C, Hermans I. NMR signatures of the active sites in Sn  zeolite. Angew. Chemie-Intl Ed. 2014; 53:10179-10183.

Xiao Y, Sun Q, Liu W. Fully relativistic theories and methods for NMR parameters .Theor. Chem. Acc. 2012; 131:1080.

Xiao Y, Zhang, Liu W. Relativistic Theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals, J. Chem. Phys. 2014; 141:164110.

Xu J, Lucier BEG, Lin Z, Sutrisno A, Terskikh VV, Huang Y. New insights into the short-range structures of microporous titanosilicates as revealed by 47/49Ti, 23Na, 39K, and 29Si solid-state NMR spectroscopy. J. Phys. Chem. C 2014; 118:27353-27365.

Yan S, Yao L. DFT application in conformational determination of cellobiose. Carbohydr. Res. 2015; 404:117-123.

Yoshizawa T, Hada M. Gauge-origin dependence of NMR shielding constants in the Douglas-Kroll-Hess method. Chem. Phys. Lett. 2015; 618:132-141.

Zhang C, Patschinski P, Stephenson DS, Panisch R, Wender JH, Holthausen MC, Zipse H. The calculation of 29Si NMR chemical shifts of tetracoordinated silicon compounds in the gas phase and in solution. Phys. Chem. Chem. Phys. 2014; 16:16642-16650.

Published
2015-11-09
How to Cite
De Dios, A. C., & Jameson, C. J. (2015). Recent Advances in Theoretical and Physical Aspects of NMR Chemical Shifts. KIMIKA, 26(2), 1-30. https://doi.org/10.26534/kimika.v26i2.1-30
Section
Review Articles