Electronic Effects in Oxidation Reactions Utilizing Dinuclear Copper Complexes with the Bis[3-(2-hydroxybenzylideneamino)phenyl] Sulfone Ligand

  • Armando, Jr. M. Guidote Department of Chemistry, School of Science and Engineering, Loyola Schools, Ateneo de Manila University, Loyola Heights, Quezon City 1108
  • Ronald L. Reyes Department of Chemistry, School of Science and Engineering, Loyola Schools, Ateneo de Manila University, Loyola Heights, Quezon City 1108
  • Riyo Kashihara Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554
  • Yasuhiko Kurusu Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554
  • Yoshiro Masuyama Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554
Keywords: catalysis, copper complex, dinuclear, hydrogen peroxide, oxidation

Abstract

Please download the paper to view the abstract.

References

Baron AJ, Stevens C, Wilmot C, Seneviratne KD, Blakeley V, Dooley DM, et al. Structure and Mechanism of Galactose Oxidase. The Free Radical Site. J Biol Chem. 1994 Oct 7; 269(40):25095-25105.

Burton SG. Biocatalysis with polyphenoloxidase: a review. Catal Today. 1994; 22:459-87.

Cahoy J, Holland PL, Tolman WB. Experimental Studies of the Interconversion of Peroxo- and Bis(oxo)Dicopper Complexes. Inorg Chem. 1999; 38:2161-2168.

Chiacchierini E, Restuccia D, Vinci G. Bioremediation of Food Industry Effluents: Recent Applications of Free and Immobilised Polyphenoloxidases. Food Sci Tech Int. 2004; 10(6):373-382.

Decker H, Tuczek F. Tyrosinase/
Catecholoxidase Activity of Hemocyanins: Structural Basis and Molecular Mechanism. Trends Biochem Sci. 2000; 25:392-397.

Duran N, Rosa MA, D’Annibale A, Gianfreda L. Application of laccases and tyrosinases (phenoloxidases) immobilised on different supports: a review. Enzyme Microb Technol. 2002; 31:907-31.

Estiu G. Recent Calculations in Proteins and Metalloenzymes In the frontiers of chemistry and biophysics [Internet]. [Place unknown]: [Publisher unknown]; 2004 Apr. Available from: http://www.qtp.ufl.edu/~kmmprogs/
links/archive/Guillermina-4-27-04.pdf.

Fenton D. Biocoordination Chemistry. New York: Oxford University Press; 1995.

Funabiki, T, editor. Oxygenases and Model Systems. Dordrecht: Kluwer Academic Publishers; 1997.

Funaki T, Takanohashi Y, Fukazawa H, Kuruma I. Estimation of kinetic parameters in the inactivation of an enzyme by a suicide substrate. Biochim Biophys Acta 1991; 1078:43-46.

Gamez P, Koval IA, Reedijk J. Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins. Dalton Trans. 2004 Dec 21; (24):4079-88.

Gerdemann C, Eicken C, Krebs B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Acc Chem Res. 2002; 35:183-191.

Guidote AM, Ando K, Kurusu Y, Nagao H, Masuyama Y. Synthesis and characterization of homodinuclear manganese and cobalt complexes bridged by a hemiacetal or by an acetate group in a µ-(η2:η1) bridging mode. Inorg Chim Acta. 2001; 314:27-36.

Guidote AM, Ando K, Terada K, Kurusu Y, Nagao H, Masuyama Y. Synthesis, characterization and reactivity of a series of dinuclear copper complexes bearing the ligand bis[3-(2-bydroxybenzylideneamino)phenyl] sulfone and derivatives. Inorg Chim Acta. 2001; 324:203-211.

Holland PL, Rodgers KR, Tolman WB. Is the Bis(Oxo)Dicopper Core Capable of Hydroxylating an Arene? Angew Chem Int Ed. 1999; 38:1139-1142.

Ikehata K, Nicell JA. Characterisation of tyrosinase for the treatment of aqueous phenols. Bioresour Technol. 2000; 74:191-9.

Karlin KD, Cruse RW, Gultneh Y. Dioxygen–copper reactivity: a hydroperoxo–dicopper(II) complex. J Chem Soc Chem Commun. 1987; 599-600.

Karlin KD, Ghosh P, Cruse RW, Rarooq A, Gultneh Y, Jacobson RR, et al. Dioxygen-copper reactivity: generation, characterization, and reactivity of a hydroperoxodicopper(II) complex. J Am Chem Soc. 1988; 110:6769-6780.

Khenkin AM, Efremenko I, Weiner, L., Martin JML, Neumann R. Photochemical Reduction of Carbon Dioxide Catalyzed by a Ruthenium-Substituted Polyoxometalate. Chem Eur J. 2010; 16(4):1356-1364.
Kitajima N, Moro-oka Y. Copper-dioxygen Complexes. Inorganic and Bioorganic Perspectives. Chem Rev. 1994; 94:737-757.

Kleifeld O, Frenkel A, Martin JM, Sagi I. Active site electronic structure and dynamics during metalloenzyme catalysis. Nat Struct Biol. 2003 Feb; 10(2):98-103.

Lewis EA, Tolman WB. Reactivity of Dioxygen-Copper Systems. Chem. Rev. 2004; 104:1047-1076.

Liang HC, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Kaderli S, et al. Contrasting Copper-Dioxygen Chemistry Arising from Alike Tridentate Alkyltriamine Copper (I) Complexes. J Am Chem Soc. 2002; 124:4170-4171.

Magnus KA, Ton-that H, Carpenter JE. Recent Structural Work on the Oxygen Transport Protein Hemocyanin. Chem Rev. 1994; 94:727-735.
Mcmurry J, Simanek E. Fundamentals of Organic Chemistry. 6th Ed. California: Thomson Brooks/Cole; 2007. p. 242-243.

Mirica LM, Otttenwaelder X, Stack TDP. Structure and Spectroscopy of Copper-Dioxygen Complexes. Chem Rev. 2004; 104:1013-1045.

Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, et al. A Stabilized µ-η2:η2-Peroxodicopper(II) Complex with a Secondary Diamine Ligand and Its Tyrosinase-like Reactivity. J Am Chem Soc. 2002; 124:9332-9333.

Ottenwaelder X, Rudd DJ, Corbett MC, Hodgson KO, Hedman B, Stack TDP. Reversible O-O Bond Cleavage in Copper-Dioxygen Isomers: Impact of Anion Basicity. J Am Chem Soc. 2006; 128:9268-9269.

Panek JJ, Ward TR, Jezierska-Mazzarello A, Novič. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields. J Comput Aided Mol Des. 2010 Sep; 24(9):719-732.

Punniyamurthy T, Velusamy S, Iqbal J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem Rev. 2005; 105(6):2329-2364.

Robb DA. Tyrosinase. In: Lontie R, editor. Copper proteins and copper enzyme, Vol. II. Boca Raton, FL: CRC Press; 1984. p. 208–40.

Rompel A, Fischer H, Meiwes D, Büldt-karentzopoulos K, Dillinger R, Tuczek F, et al. Purification and spectroscopic studies on catechol oygenases from Lycopus europaeus and Populus nigra: evidence for a dinuclear center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. J Biol Inorg Chem. 1999; 4:56-63.

Simándi LI, editor. Advances in Catalytic Activation of Dioxygen by Metal Complexes. London: Kluwer Academic Publishers; 2003.

Solomon EI, Chen P, Metz M, Lee SK, Palmer AE. Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. Angew Chem Int Ed. 2001; 40:4570-4590.

Solomon EI, Sundaram UM, Manchokin TE. Multicopper oxidases and oxygenases. Chem Rev. 1996; 96:2563-2606.

Tolman WB. Using synthetic chemistry to understand copper protein active sites: a personal perspective. J Biol Inorg Chem. 2006 Apr;11(3):261-71.

Wang RX, You XZ, Meng QJ, Mintz EA, Bu XR. A Modified Synthesis of o-Hydroxyaryl Aldehydes. Synth Commun. 1994; 24:1757-1760.

Wang YD, Dubois JL, Hedman B, Hodgson KO, Stack TDP. Catalytic galactose oxidase models: Biomimetic Cu(II)-phenoxyl-radical reactivity. Science. 1998; 279:537-540.
Published
2014-10-20
How to Cite
Guidote, A. J., Reyes, R., Kashihara, R., Kurusu, Y., & Masuyama, Y. (2014). Electronic Effects in Oxidation Reactions Utilizing Dinuclear Copper Complexes with the Bis[3-(2-hydroxybenzylideneamino)phenyl] Sulfone Ligand. KIMIKA, 25(2), 11-22. https://doi.org/https://doi.org/10.26534/kimika.v25i2.11-22
Section
Research Articles