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The application to the C H system entailed the crucial task of transforming the calculated eigenvectors to the symmetry-
adapted molecular orbitals. Absent this step, one could be in a quandary to interpret the varying orbital coefficients generated
by the three methods. Moreover, the application provides a good example of that well-known property regarding eigenfunctions
belonging to degenerate eigenvalues. And while group theory may be used to generate symmetry-adapted orbitals for the other
macrocyclic systems, it can be a lengthy exercise requiring the construction of the character tables for the rotational subgroups.
In this case, algorithms such as those employed in this paper may be considered as useful alternatives.
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THE STUDY OF MOLECULAR STRUCTURE AND SIMILAR PROBLEMS IN
chemistry often ends up in solving eigenvalue equations.
For example, in molecular orbital theory, a molecular or-
bital y, is approximated by a linear combination of basis
orbitals ¢_ centered on the constituent atoms of the mol-
ecule, i.e., )

n

Vi =mz;, 0 nConk

Using the linear variation method and assuming the over-
lap matrix elements are given by

S, =1¢6,dt=38

as in the Huckel approximation, the resulting eigenvalue
equation is given by

HC = CE

where H is the hamiltonian matrix in the ¢ basis, C is the
coefficient or eigenvector matrix and E contains the or-
bital energies along its diagonal. Written as a similarity
transformation, the eigenvalue equation becomes

C'HC=E, C'C =1 (1)

where I is the identity matrix. The solution of eq 1 entails
finding the matrices C and E. In an earlier paper [1], we
introduced the Ro diagonalization methods precisely to
soive problems of this type.

Application

The diagonalization methods were employed to study
the carbocyclic systems C H , n = 1, 12, within the Huckel
framework. To a first approximation we consider them as
belonging to the D , point group. Using the usual o,Bno-

tation, the non-zero elements of the hamiltonian matrix
areH, =H, =H  =a,and H = H; =  where i and j refer
to adjacent carbon atoms. We can further simplify the
matrix by setting oo = 0 and f= 1. This is equivalent to
having o = 0 as the zero of the energy axis and expressing
the energies in units of B, Note that n, which denotes the
number of pi electrons, also indicates the dimension of the
hamiltonian matrix and hence the number of eigenvalues
and corresponding molecular orbitals to be determined.

We illustrate the results for C_H, in Tables 1 to 4. The
calculated energies agree to six decmal places. What ap-
pears alarming are the varying molecular orbital coeffi-
cients corresponding to the doubly degenerate levels.
These observations also hold for all the other carbocyclic
systems studied. It may be added that perhaps this fact,
in addition to the absence of unifom correction factors
mentioned earlier [1], provide the basis for suspecting the
Jacobi method as unreliable when it comes to eigenvector
calculation. This, of course, is not the case.

The varying coefficients may be explained by the fact
that the diagonalization methods yield non-unique molecu-
lar orbitals, i.e., if ¥, and y, are molecular orbitals belong-
ing to a degenerate eigenvalue, then the linear combina-
tions

¥ =c G, ¥y =¥ - G
are also molecular orbitals or eigenfunctions belonging to
the same eigenvalue. The coefficient ¢, and c, are com-
pletely arbitrary but are usually chosen so that y, and y,
are orthonormal. To demonstrate this well-known prop-
erty and in order to evaluate the accuracy of the coeffi-
cients shown in Tables 1 to 3, we consider the symmetry-
adapted molecular orbitals for each carbocyclic system.
These orbitals, including the energies, are given in Cot-
ton(2) forn = 3 to 8. For n = 9 to 12, the character tables
for the corresponding rotational subgroups C_ had to be
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Table 1. Calculated molecular orbital energies and coefficients using the R6/A method for C H..
E 2 .6180342 6180341 -1.618034 -1.618034
¥ ¥, A A 78
c, 4472136 -.6307411 4.653777E-02 -.512743 -.370263
c, 4472136 -.2391698 -.5854891 .6324529 -1.833721E-03
c, 4472137 482926 -.4083902 -.5105874 3732301
c, 4472136 .5376343 .3330904 1936947 -.602065
c, 4472136 -.1506496 6142511 .1971826 .6009316
Table 2. Calculated molecular orbital energies and coefficients using the Ro/B method for C.H,.
E 2 .6180343 6180341 -1.618034 -1.618034
'//1 l//2 Wg WA '//5 -
c, .4472136 -.6279685 7.520549E-02 -.5598758 -.2941753
c, 4472136 -.1225282 -.620473 .6258609 -9.109385E-02
c, 4472136 5522418 -.3082681 -.4527887 4415583
c, 4472137 4638323 14299529 .1067663 -.6233785
c, 4472136 -.2655775 5739935 .2800371 5670795
Table 3. Calculated molecular orbital energies and coefficients using the Jacobi method for C.H,.
E 2 .6180342 .6180339 -1.618034 -1.618034
Vll '//2 '//3 y/q '//5
c, 4472136 2289218 -.5895717 9.904171E-02 6246525
c, 4472137 -.4899752 -.3999051 -.447288 -.4471392
c, 4472137 -.5317431 .3424167 6246855 9.883391E-02
c, 4472136 .1613401 6115304 -.5634743 -.2872225
i [ 4472135 .6314568 3.552972E-02 .287035 .5635697
Table 4. Symmetry-adapted molecular orbitals calculated from Table 1. The three methods yield indentical results (to
six decimal places) in complete agreement with symmetry-adapted orbitals obtained using group theory.
" E 2 .6180342 6180341 -1.618034 -1.618034
YA yE a yE b yE,a yE.b
c, 4472136 6324556 0 .6324556 0
c, 14472136 .1954396 -.6015008 -.5116673 -.371748
c, 4472137 -.5116673 -.3717482 .1954395 .6015011
c, 4472136 -.5116672 371748 .1954395 -.601501
c 4472137 1954394 6015008 .5116672 371748
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constructed. Only the molecular orbital energies and coef-
ficient for C, H, are shownin Table 5 for purposes of brev-
ity. The objective is to show that the figures in Tables 1 to
3, as well as those for the other systems, lead to symme-
try-adapted coefficients that are in complete agreement
with those in Tables 4, 5 and the above-mentioned refer-
ence.

Inspection of the molecular orbitals of the type ;. and
¥y, reveals the following: the coefficient of the basis or-
bital &, in g is equal to V2/n; whereas it is equal to zero
for molecular orbitals of the type y;,. We may therefore do
the following transformation: let y, and y, be the orthonor-
mal molecular orbitals corresponding to a doubly degener-
ate eigenvalue as calculated by any of the diagonalization
methods.

‘l’k =2 ¢mcmk’ '//, =Z ¢m cmp (2)

We then form the linear combinations

by, +y v, + by,
Ve )= —2——, y, O= ——% @3
RN e ® Vi

The constant b is chosen so that y;, and y;, orthonormal.
Using eq 2 and considering only the coefficient of ¢, in y,,
we obtain

b=c,/c,

The coefficient of ¢, in y,_ is

bclk + Cy ;
n

e

which may be written as

With these results, the symmetry-adapted molecular or-
bitals are given by

Ve W= % €y ¥ +Cu¥) 4)
V’Ebw = V/g (¢, i +Cu ¥ )

Substituting eq 2 into eqs 4-5 yields the orbital coefficients
for the y,_ and y;,-type molecular orbitals,

V’Ea(k)=),:n¢msmk , S, = l% €y Cop +€,C0) (6)
—r_l~
N2

Table 4 gives the symmetry-adapted coefficients for
C,H, calculated according to eqs 6-7. Except for a multi-
plicative factor of -1 for some molecular orbitals, the fig-

V’Eam= z ¢mtm¢ ’ tm = (cu Cok — clkcml) )

Table 5. Symmetry-adapted molecular orbital energies and coefficients for C, H, obtained using group theory.
E 2 g! g g, £ £ & £, £, -2
Vs Ve1a Vew Vieza Ve Vesa Vesb Vs Ve Va
c? 1 1 0 1 0 1 0 1 0 1
c, 1 c, s, c, s c, S, c, S, -1
cy 1 c, s, c, -s c, -s, c, -s, 1(
c, 1 c, S, c, -s c, -8, c, S, -1
c, 1 c, s, c, ] c, S, c, -8, 1
Cq 1 -1 0 1 0 -1 0 1 0 -1
c, 1 c, -8, c, s c, -s, c, S, 1
Cq 1 c, -8, c, s c, s, C, -S, -1
C, 1 c, -8, c, -S c, S, c, S, 1
o 1 c, -8, c, -s c, -8, c, -8, -1

1 &k = 2 coskw, w =2n/10.

2 The normalization constant'fo'r, y,and ygis V1/10; it is equal to ¥2/10 for all the ¥-type molecular orbitals.

3 ¢, in the first column refers to the expansion coefficients c_;in ¥, = Z$_c_.. In the inner columns, ck‘ = coskw and ¢, = sinkw. To obtain
the numerical values of ¢ ;multiply the entries in a given column by the appropriate normalization constant.
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ures are in complete accord with the orbital coefficients
obtained using group theory. The same agreement is ob-
tained for all the carocyclic systems studied, including
C,H,, as shown in Table 5. We may therefore conclude
that the eigenvectors calculated by the R diagonalization
methods, the Jacobi scheme as well, are accurate.

Examples of eqs 4-5, using results for C.H, in Table 1,
are given by the following equations,

Wi = --9972892 y, + 7.358268E-02 y,
Ve, = 7.358268E-02 y, +.9972892 v,
Vo, = --8107179 y, - 5854372 y,
Vo, = - 5854372 y, + 8107179 y,
Orbital, Total and Delocalization Energies
Figure 1 illustrates Fa summary of the orbital energies

in units of B for the C H_systems. The following observa-
tions are noted:

1. The lowest energy for any system is 2. This is associ-
ated with a strongly bonding orbital y,.

2. For nodd, there are (n-1) /2 doubly degenerate energy
levels. .

3. Forneven, the highest energy is -2, associated with a
strongly anti-bonding orbital y;. There are (n-2) /2
doubly degenerate energy levels.

4. The energy levels are ordered as follows:

A<E <E,<..<B.

From group theory, it can be shown that the energy of a
doubly degenerate level E, is givén/by [3,4] '

£(E) = 2 coskw, w = 2n/n (8)

The numerical results obtained from any of the diagonal-
ization methods agree with eq 8 for all the C H_systems.
This further establishes the accuracy of the R and Jacobi
algorithms.

The total and the delocalization energies are given in
Table 6. The total energy E,; is given by

E,=2£(A) +n,e(E) + ne (L) + ne(E,)

-2 - T B T- }E - B T }53
2
1t _@ }E, 4 4 + e, !
__._}Ez
—— E
1 | | oel= i e i
-0’7 -O.—}El
2l @@-a | o@ 1 0@ l oe-a 'L—‘7.-A
n=3 4 6
-7 8 r — o B - r B
21 N £, ] — e, ] }Es ] }Es
- } Eg }E }E4 » }E
-1 + 4 3 + 4 + 4
}53 -—.——-}53
o+ _._. }E2 T _e T T T )
oo "2 2% )= 22}
V4 + + t 2 + 8% ).,
8- -0
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Figure 1. Energy level diagrams for the C H _ systems.




Ro DIAGONALIZATION 63

-~
o

n

]
[ ]

©
teo |

-+

o+

o0

3

@

Figure 2. Total energy of the C H, systems including the molecular ions: + denotes C H *;—, C H 5 0, C H o, refers to
both cation and anion; ®, refers to molecular ions and neutral species together.

where n, is the population of the £ (E,) energy level. Note
that the highest occupied energy level is £ (E,) for n = 11,
12. The delocalization energy is

=E_-E

D T L

where E| is the total energy corresponding to a cyclic struc-
ture where no resonance is allowed to occur. The
hamiltonian matrix corresponding to such a structure is
block-diagonal with nonvanishing elements H,, , =H, =
1,i=1, 3, 5,... For n even, there are n/2 block matrices of
dimension 2x2. For n odd, there are (n-1) /2 block 2x2
matrices, the remaining 1x1 matrix being the diagonal el-
ement Hnn = 0. The diagonalization of these matrices can
be done by inspection as discussed in ref. 1 (Ro/A, case 1)
since pr =H .= 0. Thus, for n odd, the energies are 1, 0

and -1 with éegeneracies (n-1) /2, 1 and (n-1) /2 respec-
tively. For n even, the energies are 1 and -1, the degen-

eracy of each of which is n/2. For n odd, a pi electron occu-
pies the zero energy level (a non-bonding orbital) while
the rest are in the lowest (n-1) /2 degenerate levels. E_
therefore for this case is 2x (n-1)/2)x1 or E, = n-1. Forn
even, all the pi electrons are paired in the lowest n/2 de-
generate levels. This given E, =2x(n/2)x1=n.

It is instructive to plot the total energies E as a func-
tion of the ring size as shown in Figure 2. It is immedi-
ately apparent that the carbocyclic systems group them-
selves according to what we may callann + 4 rule,n =3, 4,
5,.... Thus, C;H,, C,H,-and C H, have the same energy
distribution among their neutral and ionic species. The
same can be said about C,H,, C;H, and C,H,,, the group
C.,H, and C H,, and still another group C;H; and C, H,,.
That such grouping occur can be best understood by refer-
ring to Figure 1. It is clear that each group is character-
ized by similar energy level diagram. For instance, follow-
ing the n + 4 rule with n = 3, a single pi electron occupies
an anti-bonding orbital, while the rest are held in strongly
bonding orbitals; this also obtains for n = 7 and 11. We
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Table 6. Total and delocalization energies in units of .

System

E

T D
C,H,' 4 2
C,H,, 3 1
CH, 2 0
CH, 4 0
CH, 4 0
CH, 4 0
C,H,’ 5.236 1.236
C.H,. 5.854 1.854
CH, 6.472 2.472
CH, 7 1
CH, 8 2
CH, 7 1
CH, 8.988 2.988
CH, 8.543 2.543
CH, 8.098 2.098
CH,’ 9.657 1.657
CH, 9.657 1.657
C,H, 9.657 1.657
C,H,* 10.823 2.823
C,H,. 11.170 3.170
CH, 11.518 3.518
C H,* 12.326 2.326
CH,,. 12.944 2.944
C,H, 12.326 2.326
C H,* 114.053 4.053
c H, 13.769 3.769
C,H, 13.484 3.484
C, H,' 14.928 2.928
C,H, 14.928 2.928
C,H, 14.928 2.928
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alsonotethen=4x+2,x=1, 2, 3,.. rule, where x refers to
the number of fully occupied E,_ levels, as indeed operative
for the group that includes benzene. This indicates that
carbocyclic systems with n = 6, 10,... possess aromaticchar-
acter.

The more stable species of the various C H_ systems
are also clear from Figure 2. Because E_ is the same for a
given C H_system, the species with the lowest energy is
thus most stable. For n odd, the stable species are C,H,+,
CH;-,C,H,+,C;H;-and C, H, +. Note the alternating ionic
forms. For n even, the neutral species are the more stable
structures. These results are also indicated by the values
o E; in Table 6.
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