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A method for the acquisition of !-dimensional nuclear magnetic resonance (NMR) data, which obtains· signals more 
rapidly than the conventional method is presented. However, because the data are truncated, data processing by Fourier 
transformation is overcome by alternative spectral estimation methods. Linear prediction (LP) is used to reconstruct the 
spectrum from the incomplete time-domain magnetic resonance data. A pulse sequence modified from the driven-equilib­
rium Fourier transform (DEFT) implements truncated acquisition with forced return to equilibrium. This combination of 
truncated acquisition and LP processing is a novel way of acquiring and processing NMR data. The technique is demon­
strated using a 31P NMR acquisition where the conventional procedure required 17 h whereas the proposed method took 
only45 min. 
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INTRODUCTION 

In NMR spectroscopy, a perturbation (a pulse ofRF energy) 
is applied to a chemical sample in a strong magnetic field, 
causing the nuclei in the sample to tip out of the equilibrium 
position. Under first order dynamics, the nuclei return to equi­
librium. 

It is during this time, when the magnetization is returning to 
equilibrium, that the decay can be detected in a suitably posi­
tioned pickup (receiver) coil. The voltage induced in the coil 
is recorded as the free induction decay or FID. Because of 
slight differences in local magnetic fields in molecules, each 
nucleus will precess with its own characteristic Larmor fre­
quency on its way back to equilibrium. The resulting FID, 
once subjected to Fourier transfonnation, yields the NMR 
spectrum, which is a set of resonance lines which have 
Lorentzian-shaped peaks. The infonnation contained herein 
yields the structure of the molecule whose atomic nuclei gave 
rise to the NMR spectrum. As a standard procedure, pulse 

NMR utilizes the discrete Fourier transfonn (DFT) to obtain 
the spectrum from the free induction decay. DFT is an esti­
mate of the frequency response of a molecular system [I]. In 
the case of the pulse RF approach, the impulse response, x(t) 
(i.e., the free induction decay or FID), is recorded as a func­
tion of time t, and the frequency response function X(j) is 
calculated by applying the Fourier transfonn. However, since 
x(t) is sampled for a fmite period of time, only the discrete 
Fourier transform can be calculated. 

If the relaxation process by which the perturbed nuclear mag­
netization returns to equilibrium is a first-order process, the 
theoretical impulse response will be a sum of decaying sinu­
soids: 

K 

x(t) =LAke -akt ei(21!fk1+1Pk) 
k=l 

(1) 
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(a) 

Fig. I. Truncation and its amelioration by a window function. (a) 
truncated FID and its Fourier spectrum with "sine wiggles"; (b) 
exponential apodiazation function; and, (c) apodized FID and its 

Fourier spectrum. Note the loss of intensity from a to c [5]. 

where Ak, ak,J,., <pk ,j are the real-valued amplitude, damping 
factor, frequency, phase of the kth sinusoid and the square 
root of (- 1 ), respectively. The assumed model of exponen­
tially decaying sinusoids is known to be an accurate one [2]. 

In the case where the FID is "truncated" (i.e., when the data 
are acquired only up to a point where the nucleus has not yet 
fully relaxed) "sine wiggles" in the spectrum baseline result 
(Fig. 1 ). Such baseline distortions prevent the accurate inte­
gration of the spectrum. An alternative processing method, 
called linear prediction, can be used to generate the spectrum 
from truncated data. Barkhuijsen and co-workers (3] first ap­
plied linear prediction to NMR data in 1985, and since then 
various authors have proposed a number of alternative ap­
proaches. Koehl has written a comprehensive review of the 
application ofLP to NMR data ( 4 ]. 

Expressed mathematically, the basic LP equation states: 

M 

Xn = L amxn-m 
m=l 

n = M, . . .  ,N-1 

(2) 

The values a , m = 1 , ... ,M are called the LP, or prediction, 
coefficients. The value of the number Mis called the predic­
tion order or filter order. Given a time series of N points, we 
can extrapolate the series beyond Nby applying Equation 2 if 
we know the LP coefficients. Linear predictioh is especially 
important in spectral analysis because the classes of time 
series that obey the LP equation are the sums of exponen­
tially decaying (or growing) sinusoids, and the method 
provides a way of linearly fitting an exponential to such a time 
series [5]. While the original procedure by Prony exactly fits 
an exponential curve having M exponential terms, the extended 
Prony method gives an approximate fit with M exponentials 
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to a data set of N samples using a least-squares estimation 
procedure. The model assumed in the extended Prony method 
is a set of M exponentials of arbitrary amplitude, phase, and 
frequency and damping factor· 

M 

Xn = LfJmz: (3) 
m=l 

n=O, ... ,N-1 

For generality, �m andzm are assumed to be complex and 

Pm = Am exp(jrpm) 
Zm = exp(-am + j2tifm)l1t 

(4) 

(5) 

where A is the amplitude, <pm is the phase in radians, am is the 
damping factor and f.n is the oscillation frequency in hertz, 
while 11t represents the sample interval in seconds. For a 
discussion of the relationship of Equation 3 to Equation 1 ,  
the reader is referred to the literature [6, 7]. 

Finding these four parameters that minimize the squared error 
between the actual time series data and each estimate is a 
difficult nonlinear least-squares problem, the solution for 
which involves an iterative process in which an initial value 
ofthe unknown parameters is successively improved. 

The extended Prony method provides a way of linearly fitting 
the model of Equation 3 to such a time series. The method 
consists of solving two ·sequential sets of linear equations 
with an intermediate polynomial rooting step that conceh­
trates the nonlinearity of the problem in the rooting step (6]. 
This avoids an iterative procedure and the need for an initial 
guess of the unknown parameters. 

First, theN data points are used to generate an overdetem:ined 
set of N-M equations of type Equation 1, and the coefficients 
a are determined by a linear least-squares fitting procedure. 
After the prediction coefficients are found, the frequencies 
and damping factors of the M signal components are deter­
mined from theM roots of the polynomial 

(6) 

by computing 

(7) 

(8) 

for each root zm. 
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The time domain signal is now modeled using theM roots by 
Equation 3 above. This generates yet another set of linear 
equations with M unknown � parameters (the z's are known 
coefficients) that are found using a second linear least-squares 
fit. Finally, the amplitudes and phases of the signal compo­
nents are computed from the � values by 

Am =IPml 

Om= tan-1[Im{pm)/Re{pm)] 

(9) 

(10) 

Equation 2 is called the forward LP equation because it give$ 
a way to extrapolate a time series in the forward direction. The 
linear prediction can also be applied in a backward sense, 
predicting values from the immediately subsequent ones in a 
time series: 

M 
Xn =-L bmXn+m 

m=l 
n = 0, . . . ,N-M-1 

(11) 

In the same manner as was used for Equation 2, the backward 
coefficients b m can be obtained by using the procedure above. 
Rooting of the new polynomial will then yield signal-related 
backward roots that, after root reflection around the unit circle 
and complex conjugation are identical (or nearly identical, in 
the presence of noise) to the signal related roots of Equation 
6. Complex conjugation is necessary because the time rever­
sal inherent in backward linear prediction results in apparent 
frequencies that are opposite in sign to those in the forward 
direction. 

The main advantage of using backward LP is that it is able to 
distinguish signal-related roots from "extrant>ous" roots (those 
that do not correspond to actual signal components). 
Kumaresan [8] has shown that when the least-squares method 
is used to find the coefficients of an LP filter of order M for a 
time series consisting of fewer than M sinusoids in the ab­
sence of noise, any extra zeros will be located inside the unit 
circle in the complex plane and hence separable from the sig­
nal zeros, in which the latter are located outside the unit circle 
for the case of backward prediction. The extraneous roots will 
also be roughly evenly dispersed around the unit circle. There 
is no such distinction in forward prediction-both sets of 
zeros will be inside the unit circle. In the case of noisy data, 
the extr�eous zeros tend to fall closer to or outside the ·unit 
circle. Kumaresan also used singular value decomposition 
(SVD) as the numerical algorithm of choice in solving the LP 
Equations 3 and 11. 

Normally, the number of signal components is not known 
beforehand. Thus the filter order M cannot be known, but 
some reasonable limit can be assumed. With noise in the data, 
it is better that the coefficients are overdetermined. It can be 
seen from Equations 1 and I 0 that if N is the total number of 

data points and M is the filter order, then the number of equa­
tions that the LP coefficients must satisfy is (N-M). For the 
coefficients to be uniquely determined M must be no larger 
than N/2. However, it has been shown in the previous case 
that the solution to the underdetermined case is possible: 
Kumaresan and Tufts [9] found a good choice of M is equal 
to 3N/4. The least square solutions to the underdetermined 
case are discussed by Cline and Plemmons [10]. 

Cadzow [II] proposed a signal enhancement technique that 
corrects the noise in the singular values and "cleans up" the 
data matrix. It is �ased on averaging the signal matrix to main­
tain Hankel symmetry. Chen et al. [12] proposed an improved 
signal-enhancement technique called the minimum variance 
(MV) estimation method and found their method to be supe­
rior to Cadzow's method, being more efficient and having 
better resolution when overlapping peaks are quantified. They 
also found that one or two iterations of the procedure were 
sufficient to improve the estjmates. 

The single-pulse experiment is the simplest of all NMR experi­
ments: flip the magnetization vector into the x-y plane, and 
then record the nuclear signal (FID) as it returns to equilib­
rium ( Fig. 2). For good signal-to-noise, many repetitions of 
the pulse sequence are carried out, and the results of the 
individual acquisitions are added together-a form of signal 
averaging. A 90-degree pulse value for PW gives the largest 

PO 

FiJ;. 2. Basic single pulse sequence. PW denotes the pulse-width 
duration, ACQ is acquisition time interval, and PD is pulse delay 
interval. 

ACQ 

180 
y 

90 HS 
-x 

RD 

Fig. 3. The modified DEFT pulse sequence. 90 x' 1 BOY and 90 -x denote 

pulse angles and phases. ACQ is the acquisition time interval, while 
RD is relaxation delay. HS is an optional homospoil pulse. 
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Fig. 4. Evolution of spins in the modified DEFT sequence. 

x-y magnetization, and would be ideal to use, except for the 
requirement that the subsequent pulse delay, PD (normally 
five times the longitudinal relaxation time T1 to allow the mag­
netization to relax back to equilibrium), is too long. Complete 
relaxation of nuclei is particularly important for NMR experi­
ments in which quantitative information is important. 

A pulse sequence modified from the driven-equilibrium Fou­
rier transform or DEFT [ 1 ] implements truncated acquisition 
with forced return to equilibrium (Fig. 3) The original DEFT 
experiment had a full acquisition interval ACQ (for instance, 
hundreds of milliseconds for 13C). This modified DEFT se­
quence has a very short t time delay (at most 1 00 microseconds 
for 13C) such that the data acquired are truncated. 

Figure 4 shows the evolution of the vectors as the pulse 
sequence is applied. The first 90-degree pulse (alongx) places 
the spins on the +y axis. Once on the y-axis, the individual 
vectors begin to precess according to their own resonance 
frequencies, which may be higher or lower than the Larmor 
frequency. A short time delay t follows. It is during this time 
that a partial FlO is obtained. Before the vectors completely 
rela� to equilibrium, a 180-degree pulse is applied along they­
axis, causing the fast and slow vectors to flip around. Their 
sense of precession is now reversed, and they combine once 
more along they-axis after another time delay t. Once recom­
bined, they are flipped to the upright z-axis by a -90 degree 
x-pulse, where they are now back to the equilibrium position. 
(An optional homospoil pulse may be used at this point to 
remove any remaining magnetization on the x-y plane.) Thus 
the two requirements of truncated acquisition and return to 
equilibrium are met. 

Table 1. Parameters of the test FID used in the 

simulations. 

Frequency Line Width 
Amplitude 

Phase 
Signa/No. (Arbitrary 

(Hz) (Hz) 
Units) 

(Degrees) 

1 -3200 120 1 20 
2 -1200 70 1.5 0 
3 -1000 65 1.8 0 
4 -100 60 1.6 -5 
5 300 80 4.3 -10 
6 llOO 85 4.3 -10 
7 2500 100 4.2 -15 
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Table 2. Percent errors of the estimates with one 

minimum variance iteration. 

Frequency Line Width 
Amplitude 

Phase 
Peak No. (Arbitrary 

(Hz) (Hz) 
Units) 

(Degrees) 

1 0.00 6.17 3.41 2;84 
2 O.ot 3.29 0.98 # 
3 0.05 3.83 2.41 # 
4 0.58 2.82 0.33 14.49 
5 0.05 0.57 0.17 1.43 
6 0.00 1.28 0.52 2.38 
7 O.ot 0.59 0.41 1.21 

# Since the true value IS zero, the percent error cannot be 
computed due to division by zero. 

ExPERIMENI'AL 

All NMR experiments were carried out using a JEOL 400 MHz 
Lambda spectrometer (9 .4 tesla B0 field). 

The sample used in testing the linear prediction calculations 
contained 3. 8 mg of glucose-1-phosphate ( G 1 P) and 4 7. 8 mg 
of adenosine tri-phosphate (ATP), dissolved in 10 mL of sol­
vent, which contained water and 1 mL of deuterated water 
(Dp) for field/frequency lock. 

The linear prediction calculations were performed under 
Matlab [ 14] version 5.3 running on a 400 MHz Pentium II PC 
with 256MB RAM. 

RESULTS AND DISCUSSION 

Simulations with noise-free FID. To test the accuracy of the 
backward SVD algorithms, these were applied to simulated 
FlO data. A set of seven signals (adapted from those used by 
Uike et at. [15] with various frequencies, line widths, ampli­
tudes and phases were added together to form a noise-free 
FlO (corresponding to the noiseless case). To this FlO, nor­
mally distributed (gaussian) noise sequences with variance 
0.1 were added and three different noisy FIDs were made, 
being careful to set the seed value for each random number 
noise sequence uniquely to avoid any correlation between 
the noise sequences. The following formula was used to com­
pute the signal to noise ratio: 

A2 
SNR = 10 log-

2 (]' 
(12) 

The data, composed of 1 024 points sampled at a rate of I 0240 
Hz, were truncated to 128 points. It was then subjected to 0, I, 

3, 20, and I 00 iterations of the minimum-variance regulariza­
tion method, followed by the backward LP algorithm and a 
subsequent matrix inversion. The results for the four param­
eters for each of the three sequences were tabulated, and 
statistics were generated from the three sequences (mean, 
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standard deviation, and residuals or differences from the ac­
tual value). The results show that the noiseless FID, truncated 
to N = 128 points, gave estimates that were essentially per­
fect. It should be noted that there were only seven non-zero 
singular values for the noiseless case, and thus it is trivial to 
know how many singular values ought to be retained in the 
matrix inversion procedure. When noise is introduced, all the 
singular values will be non-zero, and an educated guess as to 
how many singular values to retain has to be made. SVD­
based LP relies on the fact that the signal-related singular 
values can be distinguished from those only related to noise 
[4]. By plotting the singular values versus their index, one 
can estimate the number of signal components. Usually, this 
is equal to the number of the singular values before a plateau 
in the graph. 

Signal enhancement of simulated noisy data. The MV sig­
nal enhancement technique was applied to the simulated noisy 
data above to see if indeed an improvement of the estimated 
parameters could be made. The effect of the number of itera­
tions was also studied. Backward linear prediction based on 
SVD was followed by an n-number of minimum variance itera­
tions before fmal extraction of parameters, where n was 0, 1, 3, 
20,and 100. 

1t was found that using only one to three iterations can im­
prove the estimated parameters; in this case, the smallest 
error is found for that of a single iteration. In fact, using a 
large number of iterations harms the accuracy of the esti­
mates-but this is fortunate since fewer iterations means less 
computation time. The explanation for this behavior is that 
the iterated Cadzow (and thus also the minimum variance) 
procedure does not converge to the correct value: it yields a 
Hankel matrix of rank p, but not necessarily the one closest to 
the original noisy input [5]. The percent error and standard 
deviation, respectively, of the estimates for the case of a single 
iteration of minimum variance are tabulated in Table 2 and 
Table3. 

Looking at the percent error of the line width estimates, it can 
be seen that the largest error is a little over 6% for the signal 
component with the lowest signal to noise ratio (SNR). For 

Table 3. Standard deviations of the estimates with one 

minimum variance iteration. 

Frequency Line Width 
Amplitude 

Phase 
Peak No. (Arbitrary 

(Hz) (Hz) 
Units) 

(Degrees) 

I 1.86 3.77 0.04 0.74 

2 1.36 1.83 0.02 0.65 

3 1.50 1.36 0.03 1.32 

4 0.70 3.51 0.07 0.38 

5 0.78 1.84 0.08 0.88 

6 0.71 1.26 0.06 0.36 

7 0.47 0.62 0.04 0.04 

the signal component with the highest SNR, the percent error 
is only about 0.6%. The standard deviations represent the 
precision of the estimates and show similar behavior with 
SNR, ranging from 0.62 to 3.77 for the estimates of the line 
widths. Phase estimates show a possibility for a large error 
such as the estimate for peak number 4 showing 14.5% error, 
but with reasonable precision. The remaining parameter esti­
mates-frequency and amplitude-show excellent agreement 
with the actual values. Frequency estimates show excellent 
accuracy and reasonable precision, while the reverse is true 
for amplitude estimates. This result is important since the 
latter two parameters are the ones sought by the NMR spec­
troscopist. 

In summary, it can be said that SVD-based linear prediction 
yields reasonable estimates of the true value of parameters, 
even under conditions of noise. If the same results were to 
apply to real data, such as in typical NMR applications, LP 
should yield good estimates of the true value. 

Actual sample. To test the effectiveness of the estimation 
procedure on an actual sample, a sample containing 3.8 mg of 
a-D-glucose-1-phosphate (G 1 P) and 4 7.8 mg of adenosine 5'­
triphosphate {ATP), dissolved in I 0 mL of 10% Dp in water. 
31P data were obtained using the modified DEFT pulse se­
quence with the following parameters: pulse angle=90°, 2K 
points, I 024 scans, acquisition time= I 02.4 ms, PD = 1 s. The 
standard single pulse 31P data were obtained using the fol­
lowing parameters: pulse angle = 73°, I6K points, zero filled 
to 32K, 1000 scans, acquisition time=814.28 ms, PD = 60 s. 
The pulse delay was set based on a previously determined T1 
ofl2 s for the 31P nuclei in the sample. The DEFT experiment 
took only 45 min. In comparison, the standard 31P NMR ex­
periment took I7 h. 

The DEFT data were subjected to the backward LP algorithm 
with M=N/5 (backsvd2) and inverted using 12 retained sin­
gular values (there were ten significant singular values found). 
The total number of flops was 20 gigaflops. There were ten 

Table 4. Results of estimation, no minimum variance 

iteration. 

Frequency Line Width 
Amplitude 

Phase 
Signal No. (Arbitrary 

(Hz) (Hz) 
Units) 

(Degrees) 

1 -1935.03 14.5959 1382709 51.7819 

2 -1913.82 3.8416 1005766 86.8037 

3 -1894.69 19.4978 2175517 93.464 

4 -22.145 10.3638 2353005 63.0537 

5 -0.96207 9.9944 2289850 76.0832 

6 70.5352 7.2645 1506915 67.6806 

7 91.3563 11.0616 2204153 83.0636 

8* 153.8425 5.8533 76944.43 169.7414 

9* 189.0076 3.0749 40547.15 -169.535 

10 1623.518 0.42619 101308.9 63.826 

* Spurwus peaks 
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Fig. 5. The generated spectrum from modified DEFT truncated 

acquisition processed using J minimum variance iterations. The 

positions of missing and spurious peaks are indicated. 

Table 5. Results of estimation of with three minimum 
variance iterations. 

Frequency Line Width 
Amplitude 

Phase 
Signal No. (Hz) (Hz) (Arbitrary 

(Degrees) Units) 

I -1935.11 14.3651 1374321 51.5082 
2 -1913.82 3.7755 1002212 86.9585 
3 -1894.71 19.2601 2169303 93.4834 
4 -22.2058 10.2835 2325619 62.6493 
5 -0.86698 10.0972 2304687 77.1489 
6 70.7288 6.9381 1467266 70.41 
7 91.1667 11.6511 2319730 81.7949 
8* 193.6096 0.60539 22913.36 -166.241 
9 1623.714 0.46095 101698 I 65.5117 

*Spurious peak 

peaks found, although comparison with the regular NMR ex­
periment showed that two small peaks were spurious, or false, 
peaks. Thus only eight peaks of the expected 12 peaks were 
recorded. Table 4 summarizes the results. 

Minimum variance iterations were also carried out. After three 
iterations, the spurious peaks were reduced to one. However, 
not all of the peaks were found. Table 5 summarizes the re­
sults. Figure 5 shows the generated spectrum from modified 
DEFT truncated acquisition while Fig. 6 shows the conven­
tional FT spectrum. 

Uike eta/. [14] also reported failure to detect peaks using a 
similar LP-SVD method, but reported that another method 
(modified total least squares or TLS) retrieved all peaks when 
applied to the same data. The use of oversampling (increas­
ing the number of points for the same acquisition time) to 
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Fig. 6: 31 P spectrum obtained from conventional acquisition and 
Fourier transformation. 

increase identification power of LP, as well as accuracy and 
precision of the estimates, has been reported [16]. Looking 
for a robust and accurate approach is an area for further in­
vestigation. 

CONCLUSION 

It was shown that is possible to obtain NMR spectroscopic 
data in a truncated fashion much quicker than the conven­
tional pulse-and-acquire methods. The quicker method is a 
modification of the DEFT method. The study confirms the 
results of Carlotti eta/. [ 17] which also recommended DEFT 
for such cases but did not use LP for data analysis. They 
found that a significant improvement in signal-to-noise can 
be achieved provided the ratio t/T 2 is made as small as pos­
sible. This suggests that this technique would be most useful 
for nuclei with long relaxation times. 

The LP method is a useful method for processing truncated 
data provided its limitations are taken into account. Unlike 
FT, truncation of data does not present a problem. All of the 
spectral parameters may be obtained directly in tabular form. 
The accuracy and precision of the estimates are representa­
tive of reasonably good analytical technique. This is especially 
true of frequency and line width, which are important param­
eters in NMR spectroscopy. Although spurious peaks may 
appear, these may be reduced by regularization methods such 
as the minimum variance method. 
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